{"title":"原子力显微镜:用于细胞研究的纳米生物技术","authors":"Guangzhao Guan , Yan He , Li Mei","doi":"10.26599/NTM.2022.9130004","DOIUrl":null,"url":null,"abstract":"<div><div>Nanobiotechnology such as atomic force microscopy (AFM) has a great application in various regimes of cell biology, offering an excellent avenue to study cellular nanotopography, nanomechanics, and nanointeraction. AFM nanotopography can provide a high resolution of nano-architectures of different cells. AFM nanomechanics have shed new light on characterizing mechanical properties of cellular structures and biological materials as well as monitoring the physiopathological processes. AFM nanointeraction measurement helps the understanding of the molecular interaction forces at a nanoscale.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"1 1","pages":"Article e9130004"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic force microscopy: A nanobiotechnology for cellular research\",\"authors\":\"Guangzhao Guan , Yan He , Li Mei\",\"doi\":\"10.26599/NTM.2022.9130004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanobiotechnology such as atomic force microscopy (AFM) has a great application in various regimes of cell biology, offering an excellent avenue to study cellular nanotopography, nanomechanics, and nanointeraction. AFM nanotopography can provide a high resolution of nano-architectures of different cells. AFM nanomechanics have shed new light on characterizing mechanical properties of cellular structures and biological materials as well as monitoring the physiopathological processes. AFM nanointeraction measurement helps the understanding of the molecular interaction forces at a nanoscale.</div></div>\",\"PeriodicalId\":100941,\"journal\":{\"name\":\"Nano TransMed\",\"volume\":\"1 1\",\"pages\":\"Article e9130004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano TransMed\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2790676023000420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676023000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomic force microscopy: A nanobiotechnology for cellular research
Nanobiotechnology such as atomic force microscopy (AFM) has a great application in various regimes of cell biology, offering an excellent avenue to study cellular nanotopography, nanomechanics, and nanointeraction. AFM nanotopography can provide a high resolution of nano-architectures of different cells. AFM nanomechanics have shed new light on characterizing mechanical properties of cellular structures and biological materials as well as monitoring the physiopathological processes. AFM nanointeraction measurement helps the understanding of the molecular interaction forces at a nanoscale.