基于GIS和遥感的埃塞俄比亚中部裂谷Ziway Abijata次盆地地下水补给潜力区评价

IF 4.3 Q2 Environmental Science Journal of Water Supply Research and Technology-aqua Pub Date : 2023-07-21 DOI:10.2166/ws.2023.183
M. Badasa, Mengistu Muleta Gurmessa, Geda Feyera Negasa, Dereje Oljira, Misgana Lamessa Dinsa, Kiros Tsegay Deribew, Zenebe Reta Roba, D. O. Gemeda
{"title":"基于GIS和遥感的埃塞俄比亚中部裂谷Ziway Abijata次盆地地下水补给潜力区评价","authors":"M. Badasa, Mengistu Muleta Gurmessa, Geda Feyera Negasa, Dereje Oljira, Misgana Lamessa Dinsa, Kiros Tsegay Deribew, Zenebe Reta Roba, D. O. Gemeda","doi":"10.2166/ws.2023.183","DOIUrl":null,"url":null,"abstract":"\n \n Groundwater is fresh water that is stored in an underground zone, which is less vulnerable to pollution than surface water and communally used for economic, social, and ecological purposes. This study aimed to evaluate groundwater recharge potential by using a geographic information system (GIS) and remote sensing in the Ziway Abijata sub-basin, Central Rift Valley of Ethiopia. In the present study, six parameters such as soil drainage, slope, lineament density, drainage density, soil texture, and land use land cover were used. ArcGIS 10.3, ERDAS Imagine 2015, IDRISI Selva 17, Arc SWAT 10.3, and Google Earth Pro were applied. The results revealed that about 58 km2 (2.1%) and 1442.5 km2 (53.9%) were ranked as excellent and good for the groundwater recharge potential. Consequently, about 1183.2 km2 (43.4%) was covered by a moderate groundwater recharge zone. Larger parts of the study area were dominated by good and moderate groundwater recharge zones. Based on the results of this study, we recommended that the decision-makers, environmentalists, geologists, and other stakeholders will have a critical role in the improvements of the future sustainability and proper management of groundwater in the study area. Further researchers can investigate other remaining ecological parameters and socio-economic data that were not included in the present study.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the groundwater recharge potential zone by using the GIS and remote sensing in the Ziway Abijata sub-basin, Central Rift Valley of Ethiopia\",\"authors\":\"M. Badasa, Mengistu Muleta Gurmessa, Geda Feyera Negasa, Dereje Oljira, Misgana Lamessa Dinsa, Kiros Tsegay Deribew, Zenebe Reta Roba, D. O. Gemeda\",\"doi\":\"10.2166/ws.2023.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Groundwater is fresh water that is stored in an underground zone, which is less vulnerable to pollution than surface water and communally used for economic, social, and ecological purposes. This study aimed to evaluate groundwater recharge potential by using a geographic information system (GIS) and remote sensing in the Ziway Abijata sub-basin, Central Rift Valley of Ethiopia. In the present study, six parameters such as soil drainage, slope, lineament density, drainage density, soil texture, and land use land cover were used. ArcGIS 10.3, ERDAS Imagine 2015, IDRISI Selva 17, Arc SWAT 10.3, and Google Earth Pro were applied. The results revealed that about 58 km2 (2.1%) and 1442.5 km2 (53.9%) were ranked as excellent and good for the groundwater recharge potential. Consequently, about 1183.2 km2 (43.4%) was covered by a moderate groundwater recharge zone. Larger parts of the study area were dominated by good and moderate groundwater recharge zones. Based on the results of this study, we recommended that the decision-makers, environmentalists, geologists, and other stakeholders will have a critical role in the improvements of the future sustainability and proper management of groundwater in the study area. Further researchers can investigate other remaining ecological parameters and socio-economic data that were not included in the present study.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

地下水是储存在地下区域的淡水,它比地表水更不容易受到污染,通常用于经济、社会和生态目的。本研究旨在利用地理信息系统(GIS)和遥感技术对埃塞俄比亚中部裂谷Ziway Abijata子流域地下水补给潜力进行评价。本研究采用土壤排水、坡度、线状密度、排水密度、土壤质地、土地利用、土地覆被等6个参数。应用ArcGIS 10.3、ERDAS Imagine 2015、IDRISI Selva 17、Arc SWAT 10.3和Google Earth Pro。结果表明:地下水补给潜力优、良区分别为58 km2(2.1%)和1442.5 km2 (53.9%);因此,约1183.2 km2(43.4%)为中等地下水补给带。研究区大部分地区以地下水补给良好和中等补给带为主。基于研究结果,我们建议决策者、环保主义者、地质学家和其他利益相关者在改善研究区未来地下水的可持续性和适当管理方面发挥关键作用。进一步的研究人员可以调查其他未包括在本研究中的生态参数和社会经济数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the groundwater recharge potential zone by using the GIS and remote sensing in the Ziway Abijata sub-basin, Central Rift Valley of Ethiopia
Groundwater is fresh water that is stored in an underground zone, which is less vulnerable to pollution than surface water and communally used for economic, social, and ecological purposes. This study aimed to evaluate groundwater recharge potential by using a geographic information system (GIS) and remote sensing in the Ziway Abijata sub-basin, Central Rift Valley of Ethiopia. In the present study, six parameters such as soil drainage, slope, lineament density, drainage density, soil texture, and land use land cover were used. ArcGIS 10.3, ERDAS Imagine 2015, IDRISI Selva 17, Arc SWAT 10.3, and Google Earth Pro were applied. The results revealed that about 58 km2 (2.1%) and 1442.5 km2 (53.9%) were ranked as excellent and good for the groundwater recharge potential. Consequently, about 1183.2 km2 (43.4%) was covered by a moderate groundwater recharge zone. Larger parts of the study area were dominated by good and moderate groundwater recharge zones. Based on the results of this study, we recommended that the decision-makers, environmentalists, geologists, and other stakeholders will have a critical role in the improvements of the future sustainability and proper management of groundwater in the study area. Further researchers can investigate other remaining ecological parameters and socio-economic data that were not included in the present study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
74
审稿时长
4.5 months
期刊介绍: Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.
期刊最新文献
Incorporating economy and water demand rate uncertainty into decision-making for agricultural water allocation during droughts Development of water resources protection planning and environmental design in urban water conservancy landscape based on ecological concept Application of water resource economic management model in agricultural structure adjustment A synoptic assessment of groundwater quality in high water-demand regions of coastal Andhra Pradesh, India Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1