生物启发视觉应用的片上系统

Sungho Park, Ahmed Al-Maashri, K. Irick, A. Chandrashekhar, M. Cotter, Nandhini Chandramoorthy, M. DeBole, N. Vijaykrishnan
{"title":"生物启发视觉应用的片上系统","authors":"Sungho Park, Ahmed Al-Maashri, K. Irick, A. Chandrashekhar, M. Cotter, Nandhini Chandramoorthy, M. DeBole, N. Vijaykrishnan","doi":"10.2197/ipsjtsldm.5.71","DOIUrl":null,"url":null,"abstract":"Neuromorphic vision algorithms are biologically-inspired computational models of the primate visual pathway. They promise robustness, high accuracy, and high energy efficiency in advanced image processing applications. Despite these potential benefits, the realization of neuromorphic algorithms typically exhibit low performance even when executed on multi-core CPU and GPU platforms. This is due to the disparity in the computational modalities prominent in these algorithms and those modalities most exploited in contemporary computer architectures. In essence, acceleration of neuromorphic algorithms requires adherence to specific computational and communicational requirements. This paper discusses these requirements and proposes a framework for mapping neuromorphic vision applications on a System-on-Chip, SoC. A neuromorphic object detection and recognition on a multi-FPGA platform is presented with performance and power efficiency comparisons to CMP and GPU implementations.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"System-On-Chip for Biologically Inspired Vision Applications\",\"authors\":\"Sungho Park, Ahmed Al-Maashri, K. Irick, A. Chandrashekhar, M. Cotter, Nandhini Chandramoorthy, M. DeBole, N. Vijaykrishnan\",\"doi\":\"10.2197/ipsjtsldm.5.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic vision algorithms are biologically-inspired computational models of the primate visual pathway. They promise robustness, high accuracy, and high energy efficiency in advanced image processing applications. Despite these potential benefits, the realization of neuromorphic algorithms typically exhibit low performance even when executed on multi-core CPU and GPU platforms. This is due to the disparity in the computational modalities prominent in these algorithms and those modalities most exploited in contemporary computer architectures. In essence, acceleration of neuromorphic algorithms requires adherence to specific computational and communicational requirements. This paper discusses these requirements and proposes a framework for mapping neuromorphic vision applications on a System-on-Chip, SoC. A neuromorphic object detection and recognition on a multi-FPGA platform is presented with performance and power efficiency comparisons to CMP and GPU implementations.\",\"PeriodicalId\":38964,\"journal\":{\"name\":\"IPSJ Transactions on System LSI Design Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on System LSI Design Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtsldm.5.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.5.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 22

摘要

神经形态视觉算法是受生物学启发的灵长类视觉通路计算模型。它们承诺在高级图像处理应用中具有鲁棒性、高精度和高能效。尽管有这些潜在的好处,神经形态算法的实现通常表现出较低的性能,即使在多核CPU和GPU平台上执行。这是由于在这些算法中突出的计算模式和那些在当代计算机体系结构中最受利用的模式的差异。本质上,神经形态算法的加速需要遵守特定的计算和通信要求。本文讨论了这些需求,并提出了一个在片上系统(SoC)上映射神经形态视觉应用的框架。提出了一种基于多fpga平台的神经形态目标检测和识别方法,并与CMP和GPU实现进行了性能和功耗比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System-On-Chip for Biologically Inspired Vision Applications
Neuromorphic vision algorithms are biologically-inspired computational models of the primate visual pathway. They promise robustness, high accuracy, and high energy efficiency in advanced image processing applications. Despite these potential benefits, the realization of neuromorphic algorithms typically exhibit low performance even when executed on multi-core CPU and GPU platforms. This is due to the disparity in the computational modalities prominent in these algorithms and those modalities most exploited in contemporary computer architectures. In essence, acceleration of neuromorphic algorithms requires adherence to specific computational and communicational requirements. This paper discusses these requirements and proposes a framework for mapping neuromorphic vision applications on a System-on-Chip, SoC. A neuromorphic object detection and recognition on a multi-FPGA platform is presented with performance and power efficiency comparisons to CMP and GPU implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Measurement Results of Real Circuit Delay Degradation under Realistic Workload A CMOS-compatible Non-volatile Memory Element using Fishbone-in-cage Capacitor Parallelizing Random and SAT-based Verification Processes for Improving Toggle Coverage LLVM-C2RTL: C/C++ Based System Level RTL Design Framework Using LLVM Compiler Infrastructure Feature Vectors Based on Wire Width and Distance for Lithography Hotspot Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1