Ankur Singh Rana, B. B. Bhagyasree, T. Harini, S. Sreekumar, M. Raju
{"title":"有无可再生能源电力系统的经济与环境调度优化","authors":"Ankur Singh Rana, B. B. Bhagyasree, T. Harini, S. Sreekumar, M. Raju","doi":"10.13052/dgaej2156-3306.3826","DOIUrl":null,"url":null,"abstract":"Combined Economic and Environmental load dispatch is critical to the functioning of the power grid, and many models have been developed to address these issues using various techniques. Specially, soft computing methods have recently risen in popularity and have been used in a variety of popular and practical applications. The aim of this paper is to determine the benefits of applying Particle Swarm Optimization (PSO) to the Combined Economic and Environmental Dispatch (CEED) problem in particular. Here, an attempt has been made to find the minimum cost of generation of a system of thermal and solar power plants. The problem is multi-objective and is converted into a single objective function using weighted sum method. Analysis is also done with and without unit commitment using Priority List method and the results are compared. The analyses has been done in MATLAB tool using six thermal power generators and thirteen solar power plants.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of Economic and Environmental Dispatch of Power System with and without Renewable Energy Sources\",\"authors\":\"Ankur Singh Rana, B. B. Bhagyasree, T. Harini, S. Sreekumar, M. Raju\",\"doi\":\"10.13052/dgaej2156-3306.3826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined Economic and Environmental load dispatch is critical to the functioning of the power grid, and many models have been developed to address these issues using various techniques. Specially, soft computing methods have recently risen in popularity and have been used in a variety of popular and practical applications. The aim of this paper is to determine the benefits of applying Particle Swarm Optimization (PSO) to the Combined Economic and Environmental Dispatch (CEED) problem in particular. Here, an attempt has been made to find the minimum cost of generation of a system of thermal and solar power plants. The problem is multi-objective and is converted into a single objective function using weighted sum method. Analysis is also done with and without unit commitment using Priority List method and the results are compared. The analyses has been done in MATLAB tool using six thermal power generators and thirteen solar power plants.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimisation of Economic and Environmental Dispatch of Power System with and without Renewable Energy Sources
Combined Economic and Environmental load dispatch is critical to the functioning of the power grid, and many models have been developed to address these issues using various techniques. Specially, soft computing methods have recently risen in popularity and have been used in a variety of popular and practical applications. The aim of this paper is to determine the benefits of applying Particle Swarm Optimization (PSO) to the Combined Economic and Environmental Dispatch (CEED) problem in particular. Here, an attempt has been made to find the minimum cost of generation of a system of thermal and solar power plants. The problem is multi-objective and is converted into a single objective function using weighted sum method. Analysis is also done with and without unit commitment using Priority List method and the results are compared. The analyses has been done in MATLAB tool using six thermal power generators and thirteen solar power plants.