{"title":"评估叶绿素荧光以支持波兰作物监测的遥感技术","authors":"Radosław Gurdak, M. Bartold","doi":"10.2478/mgrsd-2020-0029","DOIUrl":null,"url":null,"abstract":"Abstract The increase in demand for food and the need to predict the impact of a warming climate on vegetation makes it critical that the best tools for assessing crop production are found. Chlorophyll fluorescence (ChlF) has been proposed as a direct indicator of photosynthesis and plant condition. The aim of this paper is to study the feasibility of estimating ChlF from spectral vegetation indices derived from Sentinel-2, in order to monitor crop stress and investigate ChlF changes in response to surface temperatures and meteorological observations. The regressions between thirty three Sentinel-2-derived VIs, and ChlF measured on the ground were evaluated in order to estimate the best predictors of ChlF. The r-Pearson correlation and polynomial linear regression were used. For maize, the highest correlation between ChlF and VIs were found for NDII (r=0.65) and for SIPI (r=−0.68). The weakest relationship between VIs and ChlF were found for sugar beets. Despite this, it should be noted that the highest correlation for sugar beets appeared for EVI (r=0.45) and S2REP (r=0.43). The results of this study indicate the need for a synergy of low and high resolution satellite data that will enable a more detailed analysis for estimating fluorescence and its relation to climatic conditions, environmental aspects, and VIs derived from satellite images.","PeriodicalId":44469,"journal":{"name":"Miscellanea Geographica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Remote sensing techniques to assess chlorophyll fluorescence in support of crop monitoring in Poland\",\"authors\":\"Radosław Gurdak, M. Bartold\",\"doi\":\"10.2478/mgrsd-2020-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The increase in demand for food and the need to predict the impact of a warming climate on vegetation makes it critical that the best tools for assessing crop production are found. Chlorophyll fluorescence (ChlF) has been proposed as a direct indicator of photosynthesis and plant condition. The aim of this paper is to study the feasibility of estimating ChlF from spectral vegetation indices derived from Sentinel-2, in order to monitor crop stress and investigate ChlF changes in response to surface temperatures and meteorological observations. The regressions between thirty three Sentinel-2-derived VIs, and ChlF measured on the ground were evaluated in order to estimate the best predictors of ChlF. The r-Pearson correlation and polynomial linear regression were used. For maize, the highest correlation between ChlF and VIs were found for NDII (r=0.65) and for SIPI (r=−0.68). The weakest relationship between VIs and ChlF were found for sugar beets. Despite this, it should be noted that the highest correlation for sugar beets appeared for EVI (r=0.45) and S2REP (r=0.43). The results of this study indicate the need for a synergy of low and high resolution satellite data that will enable a more detailed analysis for estimating fluorescence and its relation to climatic conditions, environmental aspects, and VIs derived from satellite images.\",\"PeriodicalId\":44469,\"journal\":{\"name\":\"Miscellanea Geographica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miscellanea Geographica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mgrsd-2020-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miscellanea Geographica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mgrsd-2020-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Remote sensing techniques to assess chlorophyll fluorescence in support of crop monitoring in Poland
Abstract The increase in demand for food and the need to predict the impact of a warming climate on vegetation makes it critical that the best tools for assessing crop production are found. Chlorophyll fluorescence (ChlF) has been proposed as a direct indicator of photosynthesis and plant condition. The aim of this paper is to study the feasibility of estimating ChlF from spectral vegetation indices derived from Sentinel-2, in order to monitor crop stress and investigate ChlF changes in response to surface temperatures and meteorological observations. The regressions between thirty three Sentinel-2-derived VIs, and ChlF measured on the ground were evaluated in order to estimate the best predictors of ChlF. The r-Pearson correlation and polynomial linear regression were used. For maize, the highest correlation between ChlF and VIs were found for NDII (r=0.65) and for SIPI (r=−0.68). The weakest relationship between VIs and ChlF were found for sugar beets. Despite this, it should be noted that the highest correlation for sugar beets appeared for EVI (r=0.45) and S2REP (r=0.43). The results of this study indicate the need for a synergy of low and high resolution satellite data that will enable a more detailed analysis for estimating fluorescence and its relation to climatic conditions, environmental aspects, and VIs derived from satellite images.