Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim
{"title":"多元伽玛分布的新闭形有效估计","authors":"Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim","doi":"10.1111/stan.12299","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ , is also in closed form as long as the n$$ \\sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ \\sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New closed‐form efficient estimator for multivariate gamma distribution\",\"authors\":\"Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim\",\"doi\":\"10.1111/stan.12299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {\\\\mathrm{MLE}}_{\\\\mathrm{CE}} $$ , is also in closed form as long as the n$$ \\\\sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ \\\\sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {\\\\mathrm{MLE}}_{\\\\mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {\\\\mathrm{MLE}}_{\\\\mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {\\\\mathrm{MLE}}_{\\\\mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12299\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New closed‐form efficient estimator for multivariate gamma distribution
Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ , is also in closed form as long as the n$$ \sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ \sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.