AutoScale:多层数据中心的动态、健壮的容量管理

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computer Systems Pub Date : 2012-11-01 DOI:10.1145/2382553.2382556
Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch
{"title":"AutoScale:多层数据中心的动态、健壮的容量管理","authors":"Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch","doi":"10.1145/2382553.2382556","DOIUrl":null,"url":null,"abstract":"Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state.\n We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency.\n We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"4 1","pages":"14:1-14:26"},"PeriodicalIF":2.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"314","resultStr":"{\"title\":\"AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers\",\"authors\":\"Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch\",\"doi\":\"10.1145/2382553.2382556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state.\\n We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency.\\n We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"4 1\",\"pages\":\"14:1-14:26\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"314\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2382553.2382556\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2382553.2382556","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 314

摘要

数据中心的能源成本持续上升,每年已经超过150亿美元。可悲的是,这种力量有很大一部分被浪费了。服务器平均只有10- 30%的时间处于繁忙状态,但它们在空闲状态下经常处于开启状态,在空闲状态下使用峰值功率的60%或更多。我们引入了一种动态容量管理策略AutoScale,它可以在满足响应时间sla的同时,大大减少由不可预测的时变负载驱动的数据中心所需的服务器数量。AutoScale可扩展数据中心容量,根据需要添加或删除服务器。AutoScale有两个关键特性:(i)它自动维护刚好合适的备用容量来处理突发的请求率;并且(ii)它不仅对真实跟踪的请求速率的变化具有鲁棒性,而且对请求大小和服务器效率也具有鲁棒性。我们通过在38台服务器的多层数据中心上的实现来评估动态容量管理方法,该数据中心服务于Facebook或Amazon中看到的类型的网站,具有键值存储工作负载。我们证明了AutoScale在满足sla和健壮性方面大大改进了现有的动态容量管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers
Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state. We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency. We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computer Systems
ACM Transactions on Computer Systems 工程技术-计算机:理论方法
CiteScore
4.00
自引率
0.00%
发文量
7
审稿时长
1 months
期刊介绍: ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized. TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.
期刊最新文献
PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation Trinity: High-Performance and Reliable Mobile Emulation through Graphics Projection Hardware-software Collaborative Tiered-memory Management Framework for Virtualization Diciclo: Flexible User-level Services for Efficient Multitenant Isolation Modeling the Interplay between Loop Tiling and Fusion in Optimizing Compilers Using Affine Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1