Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch
{"title":"AutoScale:多层数据中心的动态、健壮的容量管理","authors":"Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch","doi":"10.1145/2382553.2382556","DOIUrl":null,"url":null,"abstract":"Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state.\n We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency.\n We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"4 1","pages":"14:1-14:26"},"PeriodicalIF":2.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"314","resultStr":"{\"title\":\"AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers\",\"authors\":\"Anshul Gandhi, Mor Harchol-Balter, R. Raghunathan, M. Kozuch\",\"doi\":\"10.1145/2382553.2382556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state.\\n We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency.\\n We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"4 1\",\"pages\":\"14:1-14:26\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"314\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2382553.2382556\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2382553.2382556","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers
Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state.
We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency.
We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.