Patrycja Schulz, Joanna Pajdak-Czaus, Andrzej Krzysztof Siwicki
{"title":"体内噬菌体在水产养殖动物预防和治疗中的应用--若干方面。","authors":"Patrycja Schulz, Joanna Pajdak-Czaus, Andrzej Krzysztof Siwicki","doi":"10.3390/ani12101233","DOIUrl":null,"url":null,"abstract":"<p><p>To meet the nutritional requirements of our growing population, animal production must double by 2050, and due to the exhaustion of environmental capacity, any growth will have to come from aquaculture. Aquaculture is currently undergoing a dynamic development, but the intensification of production increases the risk of bacterial diseases. In recent years, there has been a drastic development in the resistance of pathogenic bacteria to antibiotics and chemotherapeutic agents approved for use, which has also taken place in aquaculture. Consequently, animal mortality and economic losses in livestock have increased. The use of drugs in closed systems is an additional challenge as it can damage biological filters. For this reason, there has been a growing interest in natural methods of combating pathogens. One of the methods is the use of bacteriophages both for prophylactic purposes and therapy. This work summarizes the diverse results of the in vivo application of bacteriophages for the prevention and control of bacterial pathogens in aquatic animals to provide a reference for further research on bacteriophages in aquaculture and to compare major achievements in the field.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137707/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects.\",\"authors\":\"Patrycja Schulz, Joanna Pajdak-Czaus, Andrzej Krzysztof Siwicki\",\"doi\":\"10.3390/ani12101233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To meet the nutritional requirements of our growing population, animal production must double by 2050, and due to the exhaustion of environmental capacity, any growth will have to come from aquaculture. Aquaculture is currently undergoing a dynamic development, but the intensification of production increases the risk of bacterial diseases. In recent years, there has been a drastic development in the resistance of pathogenic bacteria to antibiotics and chemotherapeutic agents approved for use, which has also taken place in aquaculture. Consequently, animal mortality and economic losses in livestock have increased. The use of drugs in closed systems is an additional challenge as it can damage biological filters. For this reason, there has been a growing interest in natural methods of combating pathogens. One of the methods is the use of bacteriophages both for prophylactic purposes and therapy. This work summarizes the diverse results of the in vivo application of bacteriophages for the prevention and control of bacterial pathogens in aquatic animals to provide a reference for further research on bacteriophages in aquaculture and to compare major achievements in the field.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani12101233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani12101233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects.
To meet the nutritional requirements of our growing population, animal production must double by 2050, and due to the exhaustion of environmental capacity, any growth will have to come from aquaculture. Aquaculture is currently undergoing a dynamic development, but the intensification of production increases the risk of bacterial diseases. In recent years, there has been a drastic development in the resistance of pathogenic bacteria to antibiotics and chemotherapeutic agents approved for use, which has also taken place in aquaculture. Consequently, animal mortality and economic losses in livestock have increased. The use of drugs in closed systems is an additional challenge as it can damage biological filters. For this reason, there has been a growing interest in natural methods of combating pathogens. One of the methods is the use of bacteriophages both for prophylactic purposes and therapy. This work summarizes the diverse results of the in vivo application of bacteriophages for the prevention and control of bacterial pathogens in aquatic animals to provide a reference for further research on bacteriophages in aquaculture and to compare major achievements in the field.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.