基于SFLA的径向配电网DG优化配置与分级

E. Afzalan, M. Taghikhani, M. Sedighizadeh
{"title":"基于SFLA的径向配电网DG优化配置与分级","authors":"E. Afzalan, M. Taghikhani, M. Sedighizadeh","doi":"10.5923/J.IJEE.20120203.03","DOIUrl":null,"url":null,"abstract":"Optimal placement and sizing of DG in distribution network is an optimization problem with continuous and discrete variables. Many researchers have used evolutionary methods for finding the optimal DG placement. This paper proposes a shuffled frog leaping algorithm (SFLA) for optimal placement and sizing of distributed generation (DG) in radial distribution system to minimize the total real power loss and to improve the voltage profile. The SFLA is a meta-heuristic search method inspired from the memetic evolution of a group of frogs when seeking for food. It consists of a frog leaping rule for local search and a memetic shuffling rule for global information exchange. The proposed SFL algorithm is used to determine optimal sizes and locations of multi-DGs. Test results indicate that SFLA method can obtain better results than the simple heuristic search method on the 33-bus radial distribution systems. Moreover, voltage profile improvement and branch current reduction are obtained.","PeriodicalId":14041,"journal":{"name":"International journal of energy engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Optimal Placement and Sizing of DG in Radial Distribution Networks Using SFLA\",\"authors\":\"E. Afzalan, M. Taghikhani, M. Sedighizadeh\",\"doi\":\"10.5923/J.IJEE.20120203.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal placement and sizing of DG in distribution network is an optimization problem with continuous and discrete variables. Many researchers have used evolutionary methods for finding the optimal DG placement. This paper proposes a shuffled frog leaping algorithm (SFLA) for optimal placement and sizing of distributed generation (DG) in radial distribution system to minimize the total real power loss and to improve the voltage profile. The SFLA is a meta-heuristic search method inspired from the memetic evolution of a group of frogs when seeking for food. It consists of a frog leaping rule for local search and a memetic shuffling rule for global information exchange. The proposed SFL algorithm is used to determine optimal sizes and locations of multi-DGs. Test results indicate that SFLA method can obtain better results than the simple heuristic search method on the 33-bus radial distribution systems. Moreover, voltage profile improvement and branch current reduction are obtained.\",\"PeriodicalId\":14041,\"journal\":{\"name\":\"International journal of energy engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of energy engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJEE.20120203.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJEE.20120203.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

配电网中DG的最优配置和最优规模是一个具有连续变量和离散变量的优化问题。许多研究人员使用进化方法来寻找DG的最佳位置。提出了一种求解径向配电系统中分布式发电的优化布局和优化配置的洗漱蛙跳算法,以最大限度地降低实际功率损耗,改善配电系统的电压分布。SFLA是一种元启发式搜索方法,灵感来自一群青蛙在寻找食物时的模因进化。该算法由用于局部搜索的青蛙跳跃规则和用于全局信息交换的模因洗牌规则组成。提出的SFL算法用于确定多dg的最优大小和位置。试验结果表明,在33总线径向配电系统上,SFLA方法比简单的启发式搜索方法能获得更好的结果。此外,电压分布得到改善,支路电流减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Placement and Sizing of DG in Radial Distribution Networks Using SFLA
Optimal placement and sizing of DG in distribution network is an optimization problem with continuous and discrete variables. Many researchers have used evolutionary methods for finding the optimal DG placement. This paper proposes a shuffled frog leaping algorithm (SFLA) for optimal placement and sizing of distributed generation (DG) in radial distribution system to minimize the total real power loss and to improve the voltage profile. The SFLA is a meta-heuristic search method inspired from the memetic evolution of a group of frogs when seeking for food. It consists of a frog leaping rule for local search and a memetic shuffling rule for global information exchange. The proposed SFL algorithm is used to determine optimal sizes and locations of multi-DGs. Test results indicate that SFLA method can obtain better results than the simple heuristic search method on the 33-bus radial distribution systems. Moreover, voltage profile improvement and branch current reduction are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of Carbon Emissions of HVAC Systems: A Case Study of a Pharmaceutical Site in France Evaluating Geothermal Energy Potentials in the US Western Region with GIS Combined Production of Three Bioenergy Resources from Nannochloropsis sp. Microalgae A Case Study on Off-grid Microgrid for Universal Electricity Access in the Eastern Cape of South Africa Regional Assessment of Energy Trends in West Africa Using GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1