有效马尔可夫链蒙特卡罗采样的自动参数块化

Daniel Turek, P. Valpine, C. Paciorek, Clifford Anderson-Bergman
{"title":"有效马尔可夫链蒙特卡罗采样的自动参数块化","authors":"Daniel Turek, P. Valpine, C. Paciorek, Clifford Anderson-Bergman","doi":"10.1214/16-BA1008","DOIUrl":null,"url":null,"abstract":"Markov chain Monte Carlo (MCMC) sampling is an important and commonly used tool for the analysis of hierarchical models. Nevertheless, practitioners generally have two options for MCMC: utilize existing software that generates a black-box \"one size fits all\" algorithm, or the challenging (and time consuming) task of implementing a problem-specific MCMC algorithm. Either choice may result in inefficient sampling, and hence researchers have become accustomed to MCMC runtimes on the order of days (or longer) for large models. We propose an automated procedure to determine an efficient MCMC algorithm for a given model and computing platform. Our procedure dynamically determines blocks of parameters for joint sampling that result in efficient sampling of the entire model. We test this procedure using a diverse suite of example models, and observe non-trivial improvements in MCMC efficiency for many models. Our procedure is the first attempt at such, and may be generalized to a broader space of MCMC algorithms. Our results suggest that substantive improvements in MCMC efficiency may be practically realized using our automated blocking procedure, or variants thereof, which warrants additional study and application.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Automated Parameter Blocking for Efficient Markov-Chain Monte Carlo Sampling\",\"authors\":\"Daniel Turek, P. Valpine, C. Paciorek, Clifford Anderson-Bergman\",\"doi\":\"10.1214/16-BA1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov chain Monte Carlo (MCMC) sampling is an important and commonly used tool for the analysis of hierarchical models. Nevertheless, practitioners generally have two options for MCMC: utilize existing software that generates a black-box \\\"one size fits all\\\" algorithm, or the challenging (and time consuming) task of implementing a problem-specific MCMC algorithm. Either choice may result in inefficient sampling, and hence researchers have become accustomed to MCMC runtimes on the order of days (or longer) for large models. We propose an automated procedure to determine an efficient MCMC algorithm for a given model and computing platform. Our procedure dynamically determines blocks of parameters for joint sampling that result in efficient sampling of the entire model. We test this procedure using a diverse suite of example models, and observe non-trivial improvements in MCMC efficiency for many models. Our procedure is the first attempt at such, and may be generalized to a broader space of MCMC algorithms. Our results suggest that substantive improvements in MCMC efficiency may be practically realized using our automated blocking procedure, or variants thereof, which warrants additional study and application.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-BA1008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-BA1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

马尔可夫链蒙特卡罗(MCMC)抽样是分析层次模型的一种重要且常用的工具。然而,对于MCMC,从业者通常有两种选择:利用现有的软件生成“一刀切”的黑盒算法,或者执行具有挑战性(且耗时)的任务,实现特定于问题的MCMC算法。任何一种选择都可能导致采样效率低下,因此研究人员已经习惯了大型模型的MCMC运行时间以天(或更长)为顺序。我们提出了一个自动化的程序来确定一个有效的MCMC算法为给定的模型和计算平台。我们的程序动态地确定联合采样的参数块,从而对整个模型进行有效采样。我们使用一组不同的示例模型来测试这个过程,并观察到许多模型在MCMC效率方面的显著改进。我们的程序是这样的第一次尝试,并且可以推广到更广泛的MCMC算法空间。我们的研究结果表明,使用我们的自动阻塞程序或其变体可以实际实现MCMC效率的实质性提高,这需要进一步的研究和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Parameter Blocking for Efficient Markov-Chain Monte Carlo Sampling
Markov chain Monte Carlo (MCMC) sampling is an important and commonly used tool for the analysis of hierarchical models. Nevertheless, practitioners generally have two options for MCMC: utilize existing software that generates a black-box "one size fits all" algorithm, or the challenging (and time consuming) task of implementing a problem-specific MCMC algorithm. Either choice may result in inefficient sampling, and hence researchers have become accustomed to MCMC runtimes on the order of days (or longer) for large models. We propose an automated procedure to determine an efficient MCMC algorithm for a given model and computing platform. Our procedure dynamically determines blocks of parameters for joint sampling that result in efficient sampling of the entire model. We test this procedure using a diverse suite of example models, and observe non-trivial improvements in MCMC efficiency for many models. Our procedure is the first attempt at such, and may be generalized to a broader space of MCMC algorithms. Our results suggest that substantive improvements in MCMC efficiency may be practically realized using our automated blocking procedure, or variants thereof, which warrants additional study and application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1