{"title":"具有最小担保约束和隐马尔可夫制度切换的DC养老金计划的资产配置","authors":"Liuling Luo, Xingchun Peng","doi":"10.1017/s0269964822000419","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the asset allocation problem for a DC pension plan with minimum guarantee constraint in a hidden Markov regime-switching economy. Suppose that four types of assets are available in the financial market: a risk-free asset, a zero-coupon bond, an inflation-indexed bond and a stock. The expected return rate of the stock depends on unobservable economic states, and the change of states is described by a hidden Markov chain. In addition, the CIR process is used to describe the evolution of the nominal interest rate. The contribution rate is also assumed to be stochastic. The goal of investment management is to minimize the convex risk measure of the terminal wealth in excess of the minimum guarantee constraint. First, we transform the partially observable optimization problem into the one with complete information using the Wonham filtering technique and deal with the minimum guarantee constraint by constructing auxiliary processes. Furthermore, we derive the optimal investment strategy by the BSDE approach. Finally, some numerical results are presented to illustrate the impacts of some important parameters on investment behaviors.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asset allocation for a DC pension plan with minimum guarantee constraint and hidden Markov regime-switching\",\"authors\":\"Liuling Luo, Xingchun Peng\",\"doi\":\"10.1017/s0269964822000419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the asset allocation problem for a DC pension plan with minimum guarantee constraint in a hidden Markov regime-switching economy. Suppose that four types of assets are available in the financial market: a risk-free asset, a zero-coupon bond, an inflation-indexed bond and a stock. The expected return rate of the stock depends on unobservable economic states, and the change of states is described by a hidden Markov chain. In addition, the CIR process is used to describe the evolution of the nominal interest rate. The contribution rate is also assumed to be stochastic. The goal of investment management is to minimize the convex risk measure of the terminal wealth in excess of the minimum guarantee constraint. First, we transform the partially observable optimization problem into the one with complete information using the Wonham filtering technique and deal with the minimum guarantee constraint by constructing auxiliary processes. Furthermore, we derive the optimal investment strategy by the BSDE approach. Finally, some numerical results are presented to illustrate the impacts of some important parameters on investment behaviors.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964822000419\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964822000419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Asset allocation for a DC pension plan with minimum guarantee constraint and hidden Markov regime-switching
This paper is devoted to the study of the asset allocation problem for a DC pension plan with minimum guarantee constraint in a hidden Markov regime-switching economy. Suppose that four types of assets are available in the financial market: a risk-free asset, a zero-coupon bond, an inflation-indexed bond and a stock. The expected return rate of the stock depends on unobservable economic states, and the change of states is described by a hidden Markov chain. In addition, the CIR process is used to describe the evolution of the nominal interest rate. The contribution rate is also assumed to be stochastic. The goal of investment management is to minimize the convex risk measure of the terminal wealth in excess of the minimum guarantee constraint. First, we transform the partially observable optimization problem into the one with complete information using the Wonham filtering technique and deal with the minimum guarantee constraint by constructing auxiliary processes. Furthermore, we derive the optimal investment strategy by the BSDE approach. Finally, some numerical results are presented to illustrate the impacts of some important parameters on investment behaviors.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.