棱镜梁的数学模型及其在一公里拱桥上的应用

J. Nichols
{"title":"棱镜梁的数学模型及其在一公里拱桥上的应用","authors":"J. Nichols","doi":"10.22606/MCSE.2017.11003","DOIUrl":null,"url":null,"abstract":"Design engineers, like all humans, are driven by Nash game theory to maximize return and hence simplify design. A determination of the optimal shape of beams to maximize strength and minimize costs has been an area of significant research since the 1970’s. However, real cost constraints in the market place usually see the selection of standard beams with invariant inertia tensor properties being used for most buildings throughout the world. The more challenging problem is the development of a beam of varying cross sectional area, this type of beam provides savings in terms of the quantity of steel and the mass of the ultimate building or bridge without degrading safety and can when manufactured in quantity to reduce costs. The purpose of the paper is to outline the mathematical development of aprismatic beams for everyday use in engineering to reduce material usage and hence human impact on the global environment. An example is provided using a 1 km arch bridge.","PeriodicalId":100659,"journal":{"name":"IMPACT of Computing in Science and Engineering","volume":"24 1","pages":"27-43"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aprismatic Beams – A Mathematical Model and Application to a One Kilometre Arch Bridge\",\"authors\":\"J. Nichols\",\"doi\":\"10.22606/MCSE.2017.11003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design engineers, like all humans, are driven by Nash game theory to maximize return and hence simplify design. A determination of the optimal shape of beams to maximize strength and minimize costs has been an area of significant research since the 1970’s. However, real cost constraints in the market place usually see the selection of standard beams with invariant inertia tensor properties being used for most buildings throughout the world. The more challenging problem is the development of a beam of varying cross sectional area, this type of beam provides savings in terms of the quantity of steel and the mass of the ultimate building or bridge without degrading safety and can when manufactured in quantity to reduce costs. The purpose of the paper is to outline the mathematical development of aprismatic beams for everyday use in engineering to reduce material usage and hence human impact on the global environment. An example is provided using a 1 km arch bridge.\",\"PeriodicalId\":100659,\"journal\":{\"name\":\"IMPACT of Computing in Science and Engineering\",\"volume\":\"24 1\",\"pages\":\"27-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMPACT of Computing in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22606/MCSE.2017.11003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMPACT of Computing in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22606/MCSE.2017.11003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计工程师和所有人一样,都受纳什博弈论的驱使,以最大化回报,从而简化设计。自20世纪70年代以来,确定梁的最佳形状以最大化强度和最小化成本一直是一个重要的研究领域。然而,市场上的实际成本约束通常看到选择具有不变惯性张量特性的标准梁在世界上大多数建筑物中使用。更具挑战性的问题是开发具有不同横截面积的梁,这种类型的梁在不降低安全性的情况下节省了钢材的数量和最终建筑物或桥梁的质量,并且可以在批量生产时降低成本。本文的目的是概述在工程中日常使用的棱镜梁的数学发展,以减少材料的使用,从而减少人类对全球环境的影响。以1公里拱桥为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aprismatic Beams – A Mathematical Model and Application to a One Kilometre Arch Bridge
Design engineers, like all humans, are driven by Nash game theory to maximize return and hence simplify design. A determination of the optimal shape of beams to maximize strength and minimize costs has been an area of significant research since the 1970’s. However, real cost constraints in the market place usually see the selection of standard beams with invariant inertia tensor properties being used for most buildings throughout the world. The more challenging problem is the development of a beam of varying cross sectional area, this type of beam provides savings in terms of the quantity of steel and the mass of the ultimate building or bridge without degrading safety and can when manufactured in quantity to reduce costs. The purpose of the paper is to outline the mathematical development of aprismatic beams for everyday use in engineering to reduce material usage and hence human impact on the global environment. An example is provided using a 1 km arch bridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Interaction between an Edge and an Embedded Parallel Crack in a Structural Component Notice of Retraction: Smart City Priority Correlation Using Differential Equation Automated Binocular Vision Measurement of Food Dimensions and Volume for Dietary Evaluation Intelligent Information Processing Software Engineering for Computational Science: Past, Present, Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1