并网DFIG风电系统性能研究

Bisma Hamid, Sheikh Javed Iqbal
{"title":"并网DFIG风电系统性能研究","authors":"Bisma Hamid, Sheikh Javed Iqbal","doi":"10.13052/dgaej2156-3306.38112","DOIUrl":null,"url":null,"abstract":"The paper realizes the investigation of control operation and performance in grid integrated Doubly Fed Induction Generator (DFIG) system. Battery Energy Storage (BES), coupled at the DC link of DFIG is controlled by bidirectional power converter to compensate for utility/load demand. Rotor side converter (RSC) uses tip-speed ratio maximum power point tracking (MPPT) algorithm to harness maximum power from the wind turbine. An adjustable step size least mean square (LMS) based adaptive control is implemented for the grid side converter (GSC) of DFIG system that besides managing power balance at the Point of Common Coupling (PCC) also addresses power quality issues encountered in the system due to the presence of non-linear, unbalanced loads. The step size changes with the mean square error enabling the adaptive filter to detect system changes while producing a small steady state error. Performance of the system is exhibited and validated through simulated results in a developed Simulink model for steady state and dynamic conditions. The Total Harmonic Distortion (THD) in grid currents and voltage is within IEEE 519 standard guidelines.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Investigation of Grid Connected DFIG Based Wind Energy System\",\"authors\":\"Bisma Hamid, Sheikh Javed Iqbal\",\"doi\":\"10.13052/dgaej2156-3306.38112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper realizes the investigation of control operation and performance in grid integrated Doubly Fed Induction Generator (DFIG) system. Battery Energy Storage (BES), coupled at the DC link of DFIG is controlled by bidirectional power converter to compensate for utility/load demand. Rotor side converter (RSC) uses tip-speed ratio maximum power point tracking (MPPT) algorithm to harness maximum power from the wind turbine. An adjustable step size least mean square (LMS) based adaptive control is implemented for the grid side converter (GSC) of DFIG system that besides managing power balance at the Point of Common Coupling (PCC) also addresses power quality issues encountered in the system due to the presence of non-linear, unbalanced loads. The step size changes with the mean square error enabling the adaptive filter to detect system changes while producing a small steady state error. Performance of the system is exhibited and validated through simulated results in a developed Simulink model for steady state and dynamic conditions. The Total Harmonic Distortion (THD) in grid currents and voltage is within IEEE 519 standard guidelines.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.38112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文实现了对电网集成双馈感应发电机(DFIG)系统控制运行和性能的研究。电池储能(BES)耦合在DFIG直流链路上,由双向功率变换器控制,以补偿公用事业/负荷需求。转子侧变流器(RSC)采用叶尖速比最大功率点跟踪(MPPT)算法来利用风力发电机的最大功率。基于可调步长最小均方(LMS)的自适应控制实现了DFIG系统的电网侧转换器(GSC),除了管理公共耦合点(PCC)的功率平衡外,还解决了由于非线性、不平衡负载的存在而在系统中遇到的电能质量问题。步长随均方误差的变化而变化,使自适应滤波器能够在产生小的稳态误差的同时检测系统变化。在已开发的Simulink模型中,通过稳态和动态条件下的仿真结果,展示并验证了系统的性能。电网电流和电压的总谐波失真(THD)符合IEEE 519标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Investigation of Grid Connected DFIG Based Wind Energy System
The paper realizes the investigation of control operation and performance in grid integrated Doubly Fed Induction Generator (DFIG) system. Battery Energy Storage (BES), coupled at the DC link of DFIG is controlled by bidirectional power converter to compensate for utility/load demand. Rotor side converter (RSC) uses tip-speed ratio maximum power point tracking (MPPT) algorithm to harness maximum power from the wind turbine. An adjustable step size least mean square (LMS) based adaptive control is implemented for the grid side converter (GSC) of DFIG system that besides managing power balance at the Point of Common Coupling (PCC) also addresses power quality issues encountered in the system due to the presence of non-linear, unbalanced loads. The step size changes with the mean square error enabling the adaptive filter to detect system changes while producing a small steady state error. Performance of the system is exhibited and validated through simulated results in a developed Simulink model for steady state and dynamic conditions. The Total Harmonic Distortion (THD) in grid currents and voltage is within IEEE 519 standard guidelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1