光伏组件旁路二极管热失控预测

N. Shiradkar, E. Schneller, N. Dhere, V. Gade
{"title":"光伏组件旁路二极管热失控预测","authors":"N. Shiradkar, E. Schneller, N. Dhere, V. Gade","doi":"10.1109/PVSC.2014.6924881","DOIUrl":null,"url":null,"abstract":"Bypass diodes in photovoltaic (PV) modules can undergo thermal runaway while transitioning from forward bias state to reverse bias. Theoretical framework has been developed for predicting the susceptibility of bypass diodes to thermal runaway. The operating temperature of diode in forward bias is dependent on thermal resistance of diode-junction box system and the forward current through the diode. A new parameter -`critical temperature' (junction temperature at which forward power dissipation in diode equals reverse power dissipation for given forward current and reverse voltage) is introduced. Critical temperature is only dependent on the forward current through the diode and reverse voltage that would get applied to the diode in reverse bias. Critical temperature is shown to be independent of external factors such as thermal resistance of diode/junction box and ambient temperature. It is shown that the diode undergoes thermal runaway while transitioning from forward bias to reverse bias only if the operating diode junction temperature is greater than the critical temperature. Based on this understanding, a model is developed to predict vulnerability of various Schottky bypass diodes for thermal runaway as a function of thermal resistance and forward current. The results are experimentally verified using a specially developed setup for thermal runaway testing of bypass diodes.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"43 1","pages":"3585-3588"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Predicting thermal runaway in bypass diodes in photovoltaic modules\",\"authors\":\"N. Shiradkar, E. Schneller, N. Dhere, V. Gade\",\"doi\":\"10.1109/PVSC.2014.6924881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bypass diodes in photovoltaic (PV) modules can undergo thermal runaway while transitioning from forward bias state to reverse bias. Theoretical framework has been developed for predicting the susceptibility of bypass diodes to thermal runaway. The operating temperature of diode in forward bias is dependent on thermal resistance of diode-junction box system and the forward current through the diode. A new parameter -`critical temperature' (junction temperature at which forward power dissipation in diode equals reverse power dissipation for given forward current and reverse voltage) is introduced. Critical temperature is only dependent on the forward current through the diode and reverse voltage that would get applied to the diode in reverse bias. Critical temperature is shown to be independent of external factors such as thermal resistance of diode/junction box and ambient temperature. It is shown that the diode undergoes thermal runaway while transitioning from forward bias to reverse bias only if the operating diode junction temperature is greater than the critical temperature. Based on this understanding, a model is developed to predict vulnerability of various Schottky bypass diodes for thermal runaway as a function of thermal resistance and forward current. The results are experimentally verified using a specially developed setup for thermal runaway testing of bypass diodes.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"43 1\",\"pages\":\"3585-3588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6924881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6924881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

光伏(PV)组件中的旁路二极管在从正向偏压状态过渡到反向偏压状态时会发生热失控。建立了预测旁路二极管热失控敏感性的理论框架。二极管正偏置的工作温度取决于二极管-接线盒系统的热阻和通过二极管的正向电流。引入了一个新的参数“临界温度”(在给定正向电流和反向电压下,二极管正向功耗等于反向功耗的结温)。临界温度仅取决于通过二极管的正向电流和反向电压,反向偏置将被应用到二极管。临界温度与外部因素如二极管/接线盒的热阻和环境温度无关。结果表明,只有当二极管结温大于临界温度时,二极管才会在由正向偏置到反向偏置的过程中发生热失控。基于这种理解,开发了一个模型来预测各种肖特基旁路二极管的热失控脆弱性,作为热阻和正向电流的函数。利用专门开发的旁路二极管热失控测试装置对结果进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting thermal runaway in bypass diodes in photovoltaic modules
Bypass diodes in photovoltaic (PV) modules can undergo thermal runaway while transitioning from forward bias state to reverse bias. Theoretical framework has been developed for predicting the susceptibility of bypass diodes to thermal runaway. The operating temperature of diode in forward bias is dependent on thermal resistance of diode-junction box system and the forward current through the diode. A new parameter -`critical temperature' (junction temperature at which forward power dissipation in diode equals reverse power dissipation for given forward current and reverse voltage) is introduced. Critical temperature is only dependent on the forward current through the diode and reverse voltage that would get applied to the diode in reverse bias. Critical temperature is shown to be independent of external factors such as thermal resistance of diode/junction box and ambient temperature. It is shown that the diode undergoes thermal runaway while transitioning from forward bias to reverse bias only if the operating diode junction temperature is greater than the critical temperature. Based on this understanding, a model is developed to predict vulnerability of various Schottky bypass diodes for thermal runaway as a function of thermal resistance and forward current. The results are experimentally verified using a specially developed setup for thermal runaway testing of bypass diodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid characterization of extended defects in III–V/Si by electron channeling contrast imaging Transport modeling of InGaN/GaN multiple quantum well solar cells Integration of PV into the energy system: Challenges and measures for generation and load management Determination of a minimum soiling level to affect photovoltaic devices Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1