Pyspatiotemporalgeom:一个用于时空类型和操作的python库

Mark McKenney, Niharika Nyalakonda, Jarrod McEvers, Mitchell Shipton
{"title":"Pyspatiotemporalgeom:一个用于时空类型和操作的python库","authors":"Mark McKenney, Niharika Nyalakonda, Jarrod McEvers, Mitchell Shipton","doi":"10.1145/2996913.2996973","DOIUrl":null,"url":null,"abstract":"The Pyspatiotemporalgeom library is a pure-python library implementing spatial data types, spatiotemporal data types for moving regions, and operations to create and analyze those types. The library is available on the Python Package Index (PyPI) and has been downloaded over 18,000 times since its release. In this paper, we demonstrate mechanisms to create random spatial data and perform operations over them. We then show how to create moving regions from existing data, and demonstrate aggregate operations over moving regions.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pyspatiotemporalgeom: a python library for spatiotemporal types and operations\",\"authors\":\"Mark McKenney, Niharika Nyalakonda, Jarrod McEvers, Mitchell Shipton\",\"doi\":\"10.1145/2996913.2996973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pyspatiotemporalgeom library is a pure-python library implementing spatial data types, spatiotemporal data types for moving regions, and operations to create and analyze those types. The library is available on the Python Package Index (PyPI) and has been downloaded over 18,000 times since its release. In this paper, we demonstrate mechanisms to create random spatial data and perform operations over them. We then show how to create moving regions from existing data, and demonstrate aggregate operations over moving regions.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Pyspatiotemporalgeom库是一个纯python库,实现了空间数据类型、用于移动区域的时空数据类型以及创建和分析这些类型的操作。该库可在Python包索引(PyPI)上获得,自发布以来已被下载超过18,000次。在本文中,我们演示了创建随机空间数据并对其执行操作的机制。然后,我们将展示如何从现有数据创建移动区域,并演示移动区域上的聚合操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pyspatiotemporalgeom: a python library for spatiotemporal types and operations
The Pyspatiotemporalgeom library is a pure-python library implementing spatial data types, spatiotemporal data types for moving regions, and operations to create and analyze those types. The library is available on the Python Package Index (PyPI) and has been downloaded over 18,000 times since its release. In this paper, we demonstrate mechanisms to create random spatial data and perform operations over them. We then show how to create moving regions from existing data, and demonstrate aggregate operations over moving regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1