{"title":"具有相关组件的相干系统的主动冗余中组件级与系统级的排序","authors":"Rongfang Yan, Junrui Wang, Bin Lu","doi":"10.1017/S0269964821000401","DOIUrl":null,"url":null,"abstract":"This paper investigates the issue of stochastic comparison of multi-active redundancies at the component level versus the system level. Based on the assumption that all components are statistically dependent, in the case of complete matching and nonmatching spares, we present some interesting comparison results in the sense of the hazard rate, reversed hazard rate and likelihood ratio orders, respectively. And we also obtain two comparison results between relative agings of resulting systems at the component level and the system level. Several numerical examples are provided to illustrate the theoretical results.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"117 1","pages":"1275 - 1297"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orderings of component level versus system level at active redundancies for coherent systems with dependent components\",\"authors\":\"Rongfang Yan, Junrui Wang, Bin Lu\",\"doi\":\"10.1017/S0269964821000401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the issue of stochastic comparison of multi-active redundancies at the component level versus the system level. Based on the assumption that all components are statistically dependent, in the case of complete matching and nonmatching spares, we present some interesting comparison results in the sense of the hazard rate, reversed hazard rate and likelihood ratio orders, respectively. And we also obtain two comparison results between relative agings of resulting systems at the component level and the system level. Several numerical examples are provided to illustrate the theoretical results.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"117 1\",\"pages\":\"1275 - 1297\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0269964821000401\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0269964821000401","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Orderings of component level versus system level at active redundancies for coherent systems with dependent components
This paper investigates the issue of stochastic comparison of multi-active redundancies at the component level versus the system level. Based on the assumption that all components are statistically dependent, in the case of complete matching and nonmatching spares, we present some interesting comparison results in the sense of the hazard rate, reversed hazard rate and likelihood ratio orders, respectively. And we also obtain two comparison results between relative agings of resulting systems at the component level and the system level. Several numerical examples are provided to illustrate the theoretical results.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.