协方差、稳健性和变分贝叶斯

Ryan Giordano, Tamara Broderick, Michael I. Jordan
{"title":"协方差、稳健性和变分贝叶斯","authors":"Ryan Giordano, Tamara Broderick, Michael I. Jordan","doi":"10.5555/3291125.3309613","DOIUrl":null,"url":null,"abstract":"Variational Bayes (VB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale datasets. However, even when VB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for VB. By deriving a simple formula for the effect of infinitesimal model perturbations on VB posterior means, we provide both improved covariance estimates and local robustness measures for VB, thus greatly expanding the practical usefulness of VB posterior approximations. The estimates for VB posterior covariances rely on a result from the classical Bayesian robustness literature relating derivatives of posterior expectations to posterior covariances. Our key assumption is that the VB approximation provides good estimates of a select subset of posterior means -- an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude smaller than MCMC.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"70 1","pages":"51:1-51:49"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Covariances, Robustness, and Variational Bayes\",\"authors\":\"Ryan Giordano, Tamara Broderick, Michael I. Jordan\",\"doi\":\"10.5555/3291125.3309613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational Bayes (VB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale datasets. However, even when VB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for VB. By deriving a simple formula for the effect of infinitesimal model perturbations on VB posterior means, we provide both improved covariance estimates and local robustness measures for VB, thus greatly expanding the practical usefulness of VB posterior approximations. The estimates for VB posterior covariances rely on a result from the classical Bayesian robustness literature relating derivatives of posterior expectations to posterior covariances. Our key assumption is that the VB approximation provides good estimates of a select subset of posterior means -- an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude smaller than MCMC.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"70 1\",\"pages\":\"51:1-51:49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3291125.3309613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3291125.3309613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

变分贝叶斯(VB)是一种近似贝叶斯后验推理技术,由于其在大规模数据集上的快速运行而越来越受欢迎。然而,即使VB为某些参数提供了准确的后验均值,它也经常会错误地估计方差和协方差。此外,先前的健壮性措施还没有为VB开发。通过推导出无穷小模型扰动对VB后验均值影响的简单公式,我们为VB提供了改进的协方差估计和局部鲁棒性度量,从而极大地扩展了VB后验近似的实际用途。VB后验协方差的估计依赖于经典贝叶斯稳健性文献的结果,这些文献涉及后验期望对后验协方差的导数。我们的关键假设是,VB近似提供了后验均值选择子集的良好估计——这一假设已被证明在许多实际设置中成立。在我们的实验中,我们证明了我们的方法简单,通用,快速,提供准确的后验不确定性估计和鲁棒性测量,其运行时间可以比MCMC小一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covariances, Robustness, and Variational Bayes
Variational Bayes (VB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale datasets. However, even when VB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for VB. By deriving a simple formula for the effect of infinitesimal model perturbations on VB posterior means, we provide both improved covariance estimates and local robustness measures for VB, thus greatly expanding the practical usefulness of VB posterior approximations. The estimates for VB posterior covariances rely on a result from the classical Bayesian robustness literature relating derivatives of posterior expectations to posterior covariances. Our key assumption is that the VB approximation provides good estimates of a select subset of posterior means -- an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude smaller than MCMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1