水下水雷自动探测与分类的计算机辅助探测/计算机辅助分类与数据融合算法

C. Ciany, Jim Huang
{"title":"水下水雷自动探测与分类的计算机辅助探测/计算机辅助分类与数据融合算法","authors":"C. Ciany, Jim Huang","doi":"10.1109/OCEANS.2000.881273","DOIUrl":null,"url":null,"abstract":"Raytheon has successfully developed a computer-aided detection/computer aided classification (CAD/CAC) algorithm to process the sidescan sonar outputs of both the AN/AQS20 helicopter-towed minehunting system and Woods Hole Oceanographic Institute's (WHOI) Remote Environmental Monitoring UnitS (REMUS) unmanned underwater vehicle. These systems employ high frequency acoustic imaging sonars to detect, classify, and localize minelike objects on the ocean bottom. The algorithm was initially demonstrated at the Coastal System Station (CSS) underwater range in Panama City, Florida, and then applied to REMUS sonar imagery taken in the Very Shallow Water (VSW) environment off the coast of San Diego, California. A data fusion technique for combining the outputs of three different CAD/CAC algorithms was subsequently developed and applied to a set of REMUS data. The fusion demonstrated a 4:1 reduction in false alarms relative to any single CAD/CAC algorithm. This paper gives overviews of the AN/AQS30 and the REMUS systems, describes the Raytheon CAD/CAC and Data Fusion algorithms, and gives sample results from processing of the sea test data.","PeriodicalId":68534,"journal":{"name":"中国会展","volume":"27 1","pages":"277-284 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Computer aided detection/computer aided classification and data fusion algorithms for automated detection and classification of underwater mines\",\"authors\":\"C. Ciany, Jim Huang\",\"doi\":\"10.1109/OCEANS.2000.881273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raytheon has successfully developed a computer-aided detection/computer aided classification (CAD/CAC) algorithm to process the sidescan sonar outputs of both the AN/AQS20 helicopter-towed minehunting system and Woods Hole Oceanographic Institute's (WHOI) Remote Environmental Monitoring UnitS (REMUS) unmanned underwater vehicle. These systems employ high frequency acoustic imaging sonars to detect, classify, and localize minelike objects on the ocean bottom. The algorithm was initially demonstrated at the Coastal System Station (CSS) underwater range in Panama City, Florida, and then applied to REMUS sonar imagery taken in the Very Shallow Water (VSW) environment off the coast of San Diego, California. A data fusion technique for combining the outputs of three different CAD/CAC algorithms was subsequently developed and applied to a set of REMUS data. The fusion demonstrated a 4:1 reduction in false alarms relative to any single CAD/CAC algorithm. This paper gives overviews of the AN/AQS30 and the REMUS systems, describes the Raytheon CAD/CAC and Data Fusion algorithms, and gives sample results from processing of the sea test data.\",\"PeriodicalId\":68534,\"journal\":{\"name\":\"中国会展\",\"volume\":\"27 1\",\"pages\":\"277-284 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国会展\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2000.881273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国会展","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/OCEANS.2000.881273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

雷声公司已经成功开发了一种计算机辅助探测/计算机辅助分类(CAD/CAC)算法,用于处理AN/AQS20直升机拖曳猎雷系统和伍兹霍尔海洋研究所(WHOI)远程环境监测单元(REMUS)无人潜航器的侧扫描声纳输出。这些系统采用高频声成像声纳来探测、分类和定位海底的类似地雷的物体。该算法最初在佛罗里达州巴拿马城的海岸系统站(CSS)水下范围内进行了演示,然后应用于加利福尼亚州圣地亚哥海岸的极浅水(VSW)环境中拍摄的REMUS声纳图像。随后开发了一种数据融合技术,将三种不同的CAD/CAC算法的输出结合起来,并应用于一组REMUS数据。与任何单一的CAD/CAC算法相比,融合显示误报率降低了4:1。本文概述了AN/AQS30和REMUS系统,描述了雷声公司的CAD/CAC和数据融合算法,并给出了海上试验数据处理的示例结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer aided detection/computer aided classification and data fusion algorithms for automated detection and classification of underwater mines
Raytheon has successfully developed a computer-aided detection/computer aided classification (CAD/CAC) algorithm to process the sidescan sonar outputs of both the AN/AQS20 helicopter-towed minehunting system and Woods Hole Oceanographic Institute's (WHOI) Remote Environmental Monitoring UnitS (REMUS) unmanned underwater vehicle. These systems employ high frequency acoustic imaging sonars to detect, classify, and localize minelike objects on the ocean bottom. The algorithm was initially demonstrated at the Coastal System Station (CSS) underwater range in Panama City, Florida, and then applied to REMUS sonar imagery taken in the Very Shallow Water (VSW) environment off the coast of San Diego, California. A data fusion technique for combining the outputs of three different CAD/CAC algorithms was subsequently developed and applied to a set of REMUS data. The fusion demonstrated a 4:1 reduction in false alarms relative to any single CAD/CAC algorithm. This paper gives overviews of the AN/AQS30 and the REMUS systems, describes the Raytheon CAD/CAC and Data Fusion algorithms, and gives sample results from processing of the sea test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8254
期刊最新文献
Oceanographic DataLink Analysis of non-stationary vector fields using wavelet transforms The development of a new generation of NOAA Small Craft Navigational Chart Hydroelastic response of mat-type VLFS: effects of non-zero draft and mass assumptions Acoustic channel equalization results for the ASIMOV high-speed coherent data link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1