Yulong Gu, Jiaxing Song, Weidong Liu, Lixin Zou, Y. Yao
{"title":"基于事件的社交网络中事件推荐的上下文感知矩阵分解","authors":"Yulong Gu, Jiaxing Song, Weidong Liu, Lixin Zou, Y. Yao","doi":"10.1109/WI.2016.0043","DOIUrl":null,"url":null,"abstract":"Event-based Social Networks(EBSNs) which combine online interactions and offline events among users have experienced increased popularity and rapid growth recently. In EBSNs, event recommendation is significant for users due to the extremely large amount of events. However, the event recommendation problem is rather challenging because it faces a serious cold-start problem: Events have short life time and new events are registered by only a few users. What's more, there are only implicit feedback information. Existing approaches like collaborative filtering methods are not suitable for this scenario. In this paper, we propose a Context Aware Matrix Factorization model called AlphaMF to tackle with the problem. Specifically, AlphaMF is a unified model that combines the Matrix Factorization model which models implicit feedbacks with the Linear contextual features model which models explicit contextual features. Extensive experiments on a large real-world EBSN dataset demonstrate that the AlphaMF model significantly outperforms state-of-the-art methods by 11%.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"4 1","pages":"248-255"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Context Aware Matrix Factorization for Event Recommendation in Event-Based Social Networks\",\"authors\":\"Yulong Gu, Jiaxing Song, Weidong Liu, Lixin Zou, Y. Yao\",\"doi\":\"10.1109/WI.2016.0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event-based Social Networks(EBSNs) which combine online interactions and offline events among users have experienced increased popularity and rapid growth recently. In EBSNs, event recommendation is significant for users due to the extremely large amount of events. However, the event recommendation problem is rather challenging because it faces a serious cold-start problem: Events have short life time and new events are registered by only a few users. What's more, there are only implicit feedback information. Existing approaches like collaborative filtering methods are not suitable for this scenario. In this paper, we propose a Context Aware Matrix Factorization model called AlphaMF to tackle with the problem. Specifically, AlphaMF is a unified model that combines the Matrix Factorization model which models implicit feedbacks with the Linear contextual features model which models explicit contextual features. Extensive experiments on a large real-world EBSN dataset demonstrate that the AlphaMF model significantly outperforms state-of-the-art methods by 11%.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"4 1\",\"pages\":\"248-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context Aware Matrix Factorization for Event Recommendation in Event-Based Social Networks
Event-based Social Networks(EBSNs) which combine online interactions and offline events among users have experienced increased popularity and rapid growth recently. In EBSNs, event recommendation is significant for users due to the extremely large amount of events. However, the event recommendation problem is rather challenging because it faces a serious cold-start problem: Events have short life time and new events are registered by only a few users. What's more, there are only implicit feedback information. Existing approaches like collaborative filtering methods are not suitable for this scenario. In this paper, we propose a Context Aware Matrix Factorization model called AlphaMF to tackle with the problem. Specifically, AlphaMF is a unified model that combines the Matrix Factorization model which models implicit feedbacks with the Linear contextual features model which models explicit contextual features. Extensive experiments on a large real-world EBSN dataset demonstrate that the AlphaMF model significantly outperforms state-of-the-art methods by 11%.