基于纳米复合材料的水溶液中砷电化学传感研究进展

Ömer Sadak
{"title":"基于纳米复合材料的水溶液中砷电化学传感研究进展","authors":"Ömer Sadak","doi":"10.55525/tjst.1341662","DOIUrl":null,"url":null,"abstract":"Contamination of drinking water with heavy metals is a serious threat to the global environment and public health. Currently, approximately 20 countries have been reported for arsenic levels present in drinking water that are higher than the EPA guidelines. Arsenic is highly toxic, widely dispersed and found in the earth’s crust. It can be found in inorganic as well as organic compounds in water. Arsenic is released into the environment in a variety of ways, including industrial effluents, pesticides, wood preservative chemicals, combustion of petroleum and coal, and mining operations. Currently, Arsenic is determined using a wide variety of methods that include inductively coupled plasma mass spectrometry (ICPMS), high-performance liquid chromatography (HPLC) with ICPMS and graphite furnace atomic absorption spectrometry (GFAAS). Nevertheless, these methods are slow, expensive and require skilled people to operate. Alternatively, electrochemical sensors have been potentially recognized as a powerful analytical method for the detection of heavy metals at very low concentrations. It also allows on-site and continuous monitoring of heavy metals. A nanocomposite consisting of gold nanoparticles and conducting polymers (polydiallyldimethylammonium chloride (PDDA) and polystyrene sulfonate (PSS)) functionalized graphene was used in this study to detect arsenic, which causes major environmental and health concerns.","PeriodicalId":23389,"journal":{"name":"Turkish Journal of Agriculture: Food Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution\",\"authors\":\"Ömer Sadak\",\"doi\":\"10.55525/tjst.1341662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contamination of drinking water with heavy metals is a serious threat to the global environment and public health. Currently, approximately 20 countries have been reported for arsenic levels present in drinking water that are higher than the EPA guidelines. Arsenic is highly toxic, widely dispersed and found in the earth’s crust. It can be found in inorganic as well as organic compounds in water. Arsenic is released into the environment in a variety of ways, including industrial effluents, pesticides, wood preservative chemicals, combustion of petroleum and coal, and mining operations. Currently, Arsenic is determined using a wide variety of methods that include inductively coupled plasma mass spectrometry (ICPMS), high-performance liquid chromatography (HPLC) with ICPMS and graphite furnace atomic absorption spectrometry (GFAAS). Nevertheless, these methods are slow, expensive and require skilled people to operate. Alternatively, electrochemical sensors have been potentially recognized as a powerful analytical method for the detection of heavy metals at very low concentrations. It also allows on-site and continuous monitoring of heavy metals. A nanocomposite consisting of gold nanoparticles and conducting polymers (polydiallyldimethylammonium chloride (PDDA) and polystyrene sulfonate (PSS)) functionalized graphene was used in this study to detect arsenic, which causes major environmental and health concerns.\",\"PeriodicalId\":23389,\"journal\":{\"name\":\"Turkish Journal of Agriculture: Food Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Agriculture: Food Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55525/tjst.1341662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Agriculture: Food Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55525/tjst.1341662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

饮用水受到重金属污染是对全球环境和公众健康的严重威胁。目前,大约有20个国家的饮用水中砷含量高于EPA的指导标准。砷是剧毒的,广泛分布在地壳中。它既存在于水中的无机化合物中,也存在于有机物中。砷以各种方式释放到环境中,包括工业废水、杀虫剂、木材防腐化学品、石油和煤炭燃烧以及采矿作业。目前,砷的测定方法多种多样,包括电感耦合等离子体质谱法(ICPMS)、高效液相色谱法(HPLC)和石墨炉原子吸收光谱法(GFAAS)。然而,这些方法是缓慢的,昂贵的,需要熟练的人来操作。另外,电化学传感器已经被认为是一种检测极低浓度重金属的强有力的分析方法。它还可以对重金属进行现场和连续监测。在这项研究中,一种由金纳米粒子和导电聚合物(聚二烯基二甲基氯化铵(PDDA)和聚苯乙烯磺酸盐(PSS))功能化石墨烯组成的纳米复合材料被用于检测砷,砷会引起重大的环境和健康问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution
Contamination of drinking water with heavy metals is a serious threat to the global environment and public health. Currently, approximately 20 countries have been reported for arsenic levels present in drinking water that are higher than the EPA guidelines. Arsenic is highly toxic, widely dispersed and found in the earth’s crust. It can be found in inorganic as well as organic compounds in water. Arsenic is released into the environment in a variety of ways, including industrial effluents, pesticides, wood preservative chemicals, combustion of petroleum and coal, and mining operations. Currently, Arsenic is determined using a wide variety of methods that include inductively coupled plasma mass spectrometry (ICPMS), high-performance liquid chromatography (HPLC) with ICPMS and graphite furnace atomic absorption spectrometry (GFAAS). Nevertheless, these methods are slow, expensive and require skilled people to operate. Alternatively, electrochemical sensors have been potentially recognized as a powerful analytical method for the detection of heavy metals at very low concentrations. It also allows on-site and continuous monitoring of heavy metals. A nanocomposite consisting of gold nanoparticles and conducting polymers (polydiallyldimethylammonium chloride (PDDA) and polystyrene sulfonate (PSS)) functionalized graphene was used in this study to detect arsenic, which causes major environmental and health concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review of the Nutritional Profile, Chemical Composition and Potential Health Benefits of Aronia melanocarpa (Chokeberry) Berries and Products Importance of Pseudomonas aeruginosa in Food Safety and Public Health Conservation Agriculture for Sustainable Crop Productivity and Economic Return for the Smallholders of Bangladesh: A Systematic Review Genetic Insights into Poaceae Forages: A Review of Current Marker Studies Comparative Fatty Acid Compositions of Tissues of Rainbow Trout (Oncorhynchus mykiss) with Different Ploidy and Sex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1