垃圾邮件的四种方式:理解文本数据

Nicholas J. Horton, Jie Chao, William Finzer, Phebe Palmer
{"title":"垃圾邮件的四种方式:理解文本数据","authors":"Nicholas J. Horton, Jie Chao, William Finzer, Phebe Palmer","doi":"10.1080/09332480.2022.2066414","DOIUrl":null,"url":null,"abstract":"The world is full of text data, yet text analytics has not traditionally played a large part in statistics education. We consider four different ways to provide students with opportunities to explore whether email messages are unwanted correspondence (spam). Text from subject lines are used to identify features that can be used in classification. The approaches include use of a Model Eliciting Activity, exploration with CODAP, modeling with a specially designed Shiny app, and coding more sophisticated analyses using R. The approaches vary in their use of technology and code but all share the common goal of using data to make better decisions and assessment of the accuracy of those decisions.","PeriodicalId":88226,"journal":{"name":"Chance (New York, N.Y.)","volume":"48 1","pages":"32 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spam Four Ways: Making Sense of Text Data\",\"authors\":\"Nicholas J. Horton, Jie Chao, William Finzer, Phebe Palmer\",\"doi\":\"10.1080/09332480.2022.2066414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world is full of text data, yet text analytics has not traditionally played a large part in statistics education. We consider four different ways to provide students with opportunities to explore whether email messages are unwanted correspondence (spam). Text from subject lines are used to identify features that can be used in classification. The approaches include use of a Model Eliciting Activity, exploration with CODAP, modeling with a specially designed Shiny app, and coding more sophisticated analyses using R. The approaches vary in their use of technology and code but all share the common goal of using data to make better decisions and assessment of the accuracy of those decisions.\",\"PeriodicalId\":88226,\"journal\":{\"name\":\"Chance (New York, N.Y.)\",\"volume\":\"48 1\",\"pages\":\"32 - 40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chance (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09332480.2022.2066414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chance (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09332480.2022.2066414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

世界上到处都是文本数据,但文本分析传统上并没有在统计教育中发挥重要作用。我们考虑了四种不同的方式,让学生有机会探索电子邮件信息是否是不必要的通信(垃圾邮件)。主题行的文本用于识别可用于分类的特征。这些方法包括使用Model Eliciting Activity,使用CODAP进行探索,使用特别设计的Shiny应用程序进行建模,以及使用r编写更复杂的分析代码。这些方法在技术和代码的使用上有所不同,但都有一个共同的目标,即使用数据做出更好的决策并评估这些决策的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spam Four Ways: Making Sense of Text Data
The world is full of text data, yet text analytics has not traditionally played a large part in statistics education. We consider four different ways to provide students with opportunities to explore whether email messages are unwanted correspondence (spam). Text from subject lines are used to identify features that can be used in classification. The approaches include use of a Model Eliciting Activity, exploration with CODAP, modeling with a specially designed Shiny app, and coding more sophisticated analyses using R. The approaches vary in their use of technology and code but all share the common goal of using data to make better decisions and assessment of the accuracy of those decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple discoveries in causal inference: LATE for the party. Bayes Factors for Forensic Decision Analyses with R Three Welcome Arrivals for 2023: 1. Florence Nightingale Bayesian Probability for Babies Fresh Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1