{"title":"具有感应磁场、索雷特效应和热辐射的通道磁流体动力学流动研究","authors":"U. Das, Nayan Mani Majumdar","doi":"10.1002/zamm.202200624","DOIUrl":null,"url":null,"abstract":"The current study focuses on the magnetohydrodynamic flow of fluids through two vertical, insulated walls. The influences of Newtonian heating/cooling, induced magnetic field (IMF), the Soret effect, radiative heat flux, and first‐order chemical reaction are considered. By solving the set of non‐dimensional linked governing equations, we were able to determine the expressions for the velocity, temperature, concentration, and IMF. The equations for Nusselt number, induced current density, and skin friction were also obtained. The graph displays the effects of several parameters on velocity, temperature, concentration, IMF, and induced current density (ICD). Additionally, a tabular analysis is done to see how these non‐dimensional parameters affect Nusselt number and skin frictions. It is seen that the Grashof number and Soret number improve the fluid velocity and skin friction whereas the chemical reaction parameter and Schmidt number reduces skin friction.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of magnetohydrodynamic flow on a channel with induced magnetic field, Soret effect and heat radiation\",\"authors\":\"U. Das, Nayan Mani Majumdar\",\"doi\":\"10.1002/zamm.202200624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study focuses on the magnetohydrodynamic flow of fluids through two vertical, insulated walls. The influences of Newtonian heating/cooling, induced magnetic field (IMF), the Soret effect, radiative heat flux, and first‐order chemical reaction are considered. By solving the set of non‐dimensional linked governing equations, we were able to determine the expressions for the velocity, temperature, concentration, and IMF. The equations for Nusselt number, induced current density, and skin friction were also obtained. The graph displays the effects of several parameters on velocity, temperature, concentration, IMF, and induced current density (ICD). Additionally, a tabular analysis is done to see how these non‐dimensional parameters affect Nusselt number and skin frictions. It is seen that the Grashof number and Soret number improve the fluid velocity and skin friction whereas the chemical reaction parameter and Schmidt number reduces skin friction.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202200624\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/zamm.202200624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A study of magnetohydrodynamic flow on a channel with induced magnetic field, Soret effect and heat radiation
The current study focuses on the magnetohydrodynamic flow of fluids through two vertical, insulated walls. The influences of Newtonian heating/cooling, induced magnetic field (IMF), the Soret effect, radiative heat flux, and first‐order chemical reaction are considered. By solving the set of non‐dimensional linked governing equations, we were able to determine the expressions for the velocity, temperature, concentration, and IMF. The equations for Nusselt number, induced current density, and skin friction were also obtained. The graph displays the effects of several parameters on velocity, temperature, concentration, IMF, and induced current density (ICD). Additionally, a tabular analysis is done to see how these non‐dimensional parameters affect Nusselt number and skin frictions. It is seen that the Grashof number and Soret number improve the fluid velocity and skin friction whereas the chemical reaction parameter and Schmidt number reduces skin friction.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.