{"title":"使用机器学习方法对糖尿病进行预测建模和分析","authors":"P. Mishra, D. Sharma, Abhishek Badholia","doi":"10.17762/ITII.V9I1.121","DOIUrl":null,"url":null,"abstract":"Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic. supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.","PeriodicalId":40759,"journal":{"name":"Information Technology in Industry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"PREDICTIVE MODELLING AND ANALYTICS FOR DIABETES USING A MACHINE LEARNING APPROACH\",\"authors\":\"P. Mishra, D. Sharma, Abhishek Badholia\",\"doi\":\"10.17762/ITII.V9I1.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic. supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.\",\"PeriodicalId\":40759,\"journal\":{\"name\":\"Information Technology in Industry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17762/ITII.V9I1.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ITII.V9I1.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PREDICTIVE MODELLING AND ANALYTICS FOR DIABETES USING A MACHINE LEARNING APPROACH
Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic. supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.