Do Hoon Kim, D. Alexis, G. NewPeter, Adam C Jackson, David Espinosa, T. Isbell, Anette Poulsen, Derek McKilligan, Mohamad Salman, Taimur Malik, Sophany Thach, V. Dwarakanath
{"title":"混合能量概念在新型液体聚合物水化领域的发展","authors":"Do Hoon Kim, D. Alexis, G. NewPeter, Adam C Jackson, David Espinosa, T. Isbell, Anette Poulsen, Derek McKilligan, Mohamad Salman, Taimur Malik, Sophany Thach, V. Dwarakanath","doi":"10.2118/191391-MS","DOIUrl":null,"url":null,"abstract":"\n Polymer mixing is often challenging under offshore conditions due to space constraints. A theoretical approach is required to better understand the drivers for polymer hydration and design optimal field mixing systems. We share a novel theoretical approach to gain insights into the energy required for optimum mixing of novel liquid polymers. We present a new parameter, \"Specific Mixing Energy\" that is measured under both lab and field mixing conditions and can be used to scale-up laboratory mixing. We developed a simplified laboratory mixing process for novel liquid polymer that provided acceptable viscosity yield, filtration ratio (FR), and non-plugging behavior during injectivity tests in a surrogate core. A FR less than 1.5 using a 1.2 μm filter at 1 bar was considered acceptable for inverted polymer quality. We developed estimates for specific mixing energy required for lab polymer inversion to achieve these stringent FR standards and comparable viscosity yield. We then conducted yard trials with both single-stage and dual-stage mixing of the novel liquid polymer and developed correlations for specific mixing energy under dynamic conditions. Based upon the results of lab and yard trials, we tested the approach in a field injectivity test. The FR and viscosity were also correlated to a specific mixing energy to establish the desired operating window range from laboratory to field-scale applications. Such information can be used to enhance EOR applications using liquid polymers in offshore environments.","PeriodicalId":11015,"journal":{"name":"Day 1 Mon, September 24, 2018","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of the Mixing Energy Concept to Hydrate Novel Liquid Polymers for Field Injection\",\"authors\":\"Do Hoon Kim, D. Alexis, G. NewPeter, Adam C Jackson, David Espinosa, T. Isbell, Anette Poulsen, Derek McKilligan, Mohamad Salman, Taimur Malik, Sophany Thach, V. Dwarakanath\",\"doi\":\"10.2118/191391-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer mixing is often challenging under offshore conditions due to space constraints. A theoretical approach is required to better understand the drivers for polymer hydration and design optimal field mixing systems. We share a novel theoretical approach to gain insights into the energy required for optimum mixing of novel liquid polymers. We present a new parameter, \\\"Specific Mixing Energy\\\" that is measured under both lab and field mixing conditions and can be used to scale-up laboratory mixing. We developed a simplified laboratory mixing process for novel liquid polymer that provided acceptable viscosity yield, filtration ratio (FR), and non-plugging behavior during injectivity tests in a surrogate core. A FR less than 1.5 using a 1.2 μm filter at 1 bar was considered acceptable for inverted polymer quality. We developed estimates for specific mixing energy required for lab polymer inversion to achieve these stringent FR standards and comparable viscosity yield. We then conducted yard trials with both single-stage and dual-stage mixing of the novel liquid polymer and developed correlations for specific mixing energy under dynamic conditions. Based upon the results of lab and yard trials, we tested the approach in a field injectivity test. The FR and viscosity were also correlated to a specific mixing energy to establish the desired operating window range from laboratory to field-scale applications. Such information can be used to enhance EOR applications using liquid polymers in offshore environments.\",\"PeriodicalId\":11015,\"journal\":{\"name\":\"Day 1 Mon, September 24, 2018\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, September 24, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191391-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 24, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191391-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of the Mixing Energy Concept to Hydrate Novel Liquid Polymers for Field Injection
Polymer mixing is often challenging under offshore conditions due to space constraints. A theoretical approach is required to better understand the drivers for polymer hydration and design optimal field mixing systems. We share a novel theoretical approach to gain insights into the energy required for optimum mixing of novel liquid polymers. We present a new parameter, "Specific Mixing Energy" that is measured under both lab and field mixing conditions and can be used to scale-up laboratory mixing. We developed a simplified laboratory mixing process for novel liquid polymer that provided acceptable viscosity yield, filtration ratio (FR), and non-plugging behavior during injectivity tests in a surrogate core. A FR less than 1.5 using a 1.2 μm filter at 1 bar was considered acceptable for inverted polymer quality. We developed estimates for specific mixing energy required for lab polymer inversion to achieve these stringent FR standards and comparable viscosity yield. We then conducted yard trials with both single-stage and dual-stage mixing of the novel liquid polymer and developed correlations for specific mixing energy under dynamic conditions. Based upon the results of lab and yard trials, we tested the approach in a field injectivity test. The FR and viscosity were also correlated to a specific mixing energy to establish the desired operating window range from laboratory to field-scale applications. Such information can be used to enhance EOR applications using liquid polymers in offshore environments.