{"title":"面向GPU集群深度学习应用的分层、批量同步随机梯度下降算法","authors":"Guojing Cong, Onkar Bhardwaj","doi":"10.1109/ICMLA.2017.00-56","DOIUrl":null,"url":null,"abstract":"The training data and models are becoming increasingly large in many deep-learning applications. Large-scale distributed processing is employed to accelerate training. Increasing the number of learners in synchronous and asynchronous stochastic gradient descent presents challenges to convergence and communication performance. We present our hierarchical, bulk-synchronous stochastic gradient algorithm that effectively balances execution time and accuracy for training in deep-learning applications on GPU clusters. It achieves much better convergence and execution time at scale in comparison to asynchronous stochastic gradient descent implementations. When deployed on a cluster of 128 GPUs, our implementation achieves up to 56 times speedups over the sequential stochastic gradient descent with similar test accuracy for our target application.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"30 1","pages":"818-821"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hierarchical, Bulk-Synchronous Stochastic Gradient Descent Algorithm for Deep-Learning Applications on GPU Clusters\",\"authors\":\"Guojing Cong, Onkar Bhardwaj\",\"doi\":\"10.1109/ICMLA.2017.00-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The training data and models are becoming increasingly large in many deep-learning applications. Large-scale distributed processing is employed to accelerate training. Increasing the number of learners in synchronous and asynchronous stochastic gradient descent presents challenges to convergence and communication performance. We present our hierarchical, bulk-synchronous stochastic gradient algorithm that effectively balances execution time and accuracy for training in deep-learning applications on GPU clusters. It achieves much better convergence and execution time at scale in comparison to asynchronous stochastic gradient descent implementations. When deployed on a cluster of 128 GPUs, our implementation achieves up to 56 times speedups over the sequential stochastic gradient descent with similar test accuracy for our target application.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"30 1\",\"pages\":\"818-821\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hierarchical, Bulk-Synchronous Stochastic Gradient Descent Algorithm for Deep-Learning Applications on GPU Clusters
The training data and models are becoming increasingly large in many deep-learning applications. Large-scale distributed processing is employed to accelerate training. Increasing the number of learners in synchronous and asynchronous stochastic gradient descent presents challenges to convergence and communication performance. We present our hierarchical, bulk-synchronous stochastic gradient algorithm that effectively balances execution time and accuracy for training in deep-learning applications on GPU clusters. It achieves much better convergence and execution time at scale in comparison to asynchronous stochastic gradient descent implementations. When deployed on a cluster of 128 GPUs, our implementation achieves up to 56 times speedups over the sequential stochastic gradient descent with similar test accuracy for our target application.