S. Karthikeyini, G. Vidhya, T. Vetriselvi, K. Deepa
{"title":"在IoMT框架下应用Logistic混沌蜜獾优化的D-GRU预测心脏病","authors":"S. Karthikeyini, G. Vidhya, T. Vetriselvi, K. Deepa","doi":"10.5755/j01.itc.52.2.32899","DOIUrl":null,"url":null,"abstract":"In recent years, heart disease has superseded several other contributory death factors. It is challenging to predict an individual’s risk of acquiring heart disease since it requires both expert knowledge and real-world experience. Developing an effective method for the prognosis of heart disease using Internet of Medical Things (IoMT) technology in healthcare organizations by collecting sensor data from patients’ bodies, utilizing robust expert systems, and incorporating vast healthcare data on cardiac disorders to alert physicians in critical situations is a challenging task. Several machine learning-based techniques for predicting and diagnosing cardiac disease have recently been demonstrated. However, these algorithms cannot effectively handle high-dimensionalinformation due to the need for an intelligent framework incorporating multiple sources to predict cardiac illness. This work proposes a unique model for heart disease prediction based on deep learning, Deep Gated Recurrent Units (D-GRU), which combines with Stacked Auto Encoders. A novel optimization algorithm, the Logistic Chaos Honey Badger Algorithm, is proposed for optimal feature selection. Publicly available heart disease-related datasets collected from UCI Repository, Cleveland Database, are used for training the proposed D-GRU model. The trained model is further tested on the data gathered from the sensors in the IoMT framework. The performance of the proposed model is compared against several deep learning models and existing works in the literature. The proposed D-GRU model outperforms the other models taken for comparison andexhibits performance supremacy with an accuracy of 95.15% in predicting heart diseases.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"17 1","pages":"367-380"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Disease Prognosis Using D-GRU with Logistic Chaos Honey Badger Optimization in IoMT Framework\",\"authors\":\"S. Karthikeyini, G. Vidhya, T. Vetriselvi, K. Deepa\",\"doi\":\"10.5755/j01.itc.52.2.32899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, heart disease has superseded several other contributory death factors. It is challenging to predict an individual’s risk of acquiring heart disease since it requires both expert knowledge and real-world experience. Developing an effective method for the prognosis of heart disease using Internet of Medical Things (IoMT) technology in healthcare organizations by collecting sensor data from patients’ bodies, utilizing robust expert systems, and incorporating vast healthcare data on cardiac disorders to alert physicians in critical situations is a challenging task. Several machine learning-based techniques for predicting and diagnosing cardiac disease have recently been demonstrated. However, these algorithms cannot effectively handle high-dimensionalinformation due to the need for an intelligent framework incorporating multiple sources to predict cardiac illness. This work proposes a unique model for heart disease prediction based on deep learning, Deep Gated Recurrent Units (D-GRU), which combines with Stacked Auto Encoders. A novel optimization algorithm, the Logistic Chaos Honey Badger Algorithm, is proposed for optimal feature selection. Publicly available heart disease-related datasets collected from UCI Repository, Cleveland Database, are used for training the proposed D-GRU model. The trained model is further tested on the data gathered from the sensors in the IoMT framework. The performance of the proposed model is compared against several deep learning models and existing works in the literature. The proposed D-GRU model outperforms the other models taken for comparison andexhibits performance supremacy with an accuracy of 95.15% in predicting heart diseases.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"17 1\",\"pages\":\"367-380\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.2.32899\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32899","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Heart Disease Prognosis Using D-GRU with Logistic Chaos Honey Badger Optimization in IoMT Framework
In recent years, heart disease has superseded several other contributory death factors. It is challenging to predict an individual’s risk of acquiring heart disease since it requires both expert knowledge and real-world experience. Developing an effective method for the prognosis of heart disease using Internet of Medical Things (IoMT) technology in healthcare organizations by collecting sensor data from patients’ bodies, utilizing robust expert systems, and incorporating vast healthcare data on cardiac disorders to alert physicians in critical situations is a challenging task. Several machine learning-based techniques for predicting and diagnosing cardiac disease have recently been demonstrated. However, these algorithms cannot effectively handle high-dimensionalinformation due to the need for an intelligent framework incorporating multiple sources to predict cardiac illness. This work proposes a unique model for heart disease prediction based on deep learning, Deep Gated Recurrent Units (D-GRU), which combines with Stacked Auto Encoders. A novel optimization algorithm, the Logistic Chaos Honey Badger Algorithm, is proposed for optimal feature selection. Publicly available heart disease-related datasets collected from UCI Repository, Cleveland Database, are used for training the proposed D-GRU model. The trained model is further tested on the data gathered from the sensors in the IoMT framework. The performance of the proposed model is compared against several deep learning models and existing works in the literature. The proposed D-GRU model outperforms the other models taken for comparison andexhibits performance supremacy with an accuracy of 95.15% in predicting heart diseases.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.