{"title":"具有优异光催化性能的层次化ZnO纳米材料","authors":"M. Alenezi, A. Almeshal, A. Alkhaledi","doi":"10.4028/p-652gfh","DOIUrl":null,"url":null,"abstract":"A well-controlled multistage hydrothermal technique was developed to synthesise hierarchical zinc oxide (ZnO) nanomaterials with a high surface-to-volume ratio. Hierarchical ZnO nanomaterials, hierarchical nanowires (HNWs) and hierarchical nanodiscs (HNDs), assembled from initial mono-morphological nanomaterials, ZnO nanowires, and ZnO nanodiscs respectively were prepared by sequential nucleation and growth following a hydrothermal course. The hierarchical nanomaterials composed of one-dimensional nanowire building blocks were obtained by introducing zinc nitrate as a source of zinc ions during the second growth phase. In comparison to their initial monomorphological counterparts, the prepared HNWs and HNDs showed superior photocatalytic performances. The improvement in the photocatalytic performance was ascribed to the reduction in dimensionality, the ultrahigh surface-to-volume ratio, the expanded proportion of the exposed polar area, and the creation of nanojunctions between the secondary nanowires and initial ZnO nanowires or nanodiscs. This work paves the way for the low-cost, large-scale, and low-temperature production of ZnO nanomaterials with superior photocatalytic properties.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"31 1","pages":"59 - 70"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical ZnO Nanomaterials with Superior Photocatalytic Properties\",\"authors\":\"M. Alenezi, A. Almeshal, A. Alkhaledi\",\"doi\":\"10.4028/p-652gfh\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-controlled multistage hydrothermal technique was developed to synthesise hierarchical zinc oxide (ZnO) nanomaterials with a high surface-to-volume ratio. Hierarchical ZnO nanomaterials, hierarchical nanowires (HNWs) and hierarchical nanodiscs (HNDs), assembled from initial mono-morphological nanomaterials, ZnO nanowires, and ZnO nanodiscs respectively were prepared by sequential nucleation and growth following a hydrothermal course. The hierarchical nanomaterials composed of one-dimensional nanowire building blocks were obtained by introducing zinc nitrate as a source of zinc ions during the second growth phase. In comparison to their initial monomorphological counterparts, the prepared HNWs and HNDs showed superior photocatalytic performances. The improvement in the photocatalytic performance was ascribed to the reduction in dimensionality, the ultrahigh surface-to-volume ratio, the expanded proportion of the exposed polar area, and the creation of nanojunctions between the secondary nanowires and initial ZnO nanowires or nanodiscs. This work paves the way for the low-cost, large-scale, and low-temperature production of ZnO nanomaterials with superior photocatalytic properties.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"31 1\",\"pages\":\"59 - 70\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-652gfh\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-652gfh","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchical ZnO Nanomaterials with Superior Photocatalytic Properties
A well-controlled multistage hydrothermal technique was developed to synthesise hierarchical zinc oxide (ZnO) nanomaterials with a high surface-to-volume ratio. Hierarchical ZnO nanomaterials, hierarchical nanowires (HNWs) and hierarchical nanodiscs (HNDs), assembled from initial mono-morphological nanomaterials, ZnO nanowires, and ZnO nanodiscs respectively were prepared by sequential nucleation and growth following a hydrothermal course. The hierarchical nanomaterials composed of one-dimensional nanowire building blocks were obtained by introducing zinc nitrate as a source of zinc ions during the second growth phase. In comparison to their initial monomorphological counterparts, the prepared HNWs and HNDs showed superior photocatalytic performances. The improvement in the photocatalytic performance was ascribed to the reduction in dimensionality, the ultrahigh surface-to-volume ratio, the expanded proportion of the exposed polar area, and the creation of nanojunctions between the secondary nanowires and initial ZnO nanowires or nanodiscs. This work paves the way for the low-cost, large-scale, and low-temperature production of ZnO nanomaterials with superior photocatalytic properties.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.