{"title":"交流NBTI应力下GE pmosfet的缺陷及寿命预测","authors":"J. Zhang, Jigang Ma, W. Zhang, Z. Ji","doi":"10.1109/CSTIC.2017.7919733","DOIUrl":null,"url":null,"abstract":"Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"135 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defects and lifetime prediction for GE pMOSFETs under AC NBTI stresses\",\"authors\":\"J. Zhang, Jigang Ma, W. Zhang, Z. Ji\",\"doi\":\"10.1109/CSTIC.2017.7919733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.\",\"PeriodicalId\":6846,\"journal\":{\"name\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"135 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC.2017.7919733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defects and lifetime prediction for GE pMOSFETs under AC NBTI stresses
Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.