交流NBTI应力下GE pmosfet的缺陷及寿命预测

J. Zhang, Jigang Ma, W. Zhang, Z. Ji
{"title":"交流NBTI应力下GE pmosfet的缺陷及寿命预测","authors":"J. Zhang, Jigang Ma, W. Zhang, Z. Ji","doi":"10.1109/CSTIC.2017.7919733","DOIUrl":null,"url":null,"abstract":"Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"135 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defects and lifetime prediction for GE pMOSFETs under AC NBTI stresses\",\"authors\":\"J. Zhang, Jigang Ma, W. Zhang, Z. Ji\",\"doi\":\"10.1109/CSTIC.2017.7919733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.\",\"PeriodicalId\":6846,\"journal\":{\"name\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"135 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC.2017.7919733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锗具有较高的空穴迁移率,是pmosfet中替代硅的候选材料。本文综述了近年来在理解Ge pmosfet负偏置温度不稳定性(NBTI)方面的进展,并将其与SiON/Si器件进行了比较。Ge和SiON/Si器件都有两组缺陷:生长空穴陷阱(AHT)和生成缺陷(GDs)。然而,生成过程是不同的:对于SiON/Si器件,GDs是接口控制的,对于Ge器件,GDs是介质控制的。这导致Ge在直流应力下的GDs比在交流应力下高得多,尽管它们与SiON/Si器件相似。此外,GDs的能级随电荷状态的变化而变化,并且在Ge中和后可以复位到原始前驱体状态,但这些过程对于SiON/Si来说不明显。本文将介绍这些差异对寿命预测的影响,并探讨缺陷和物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defects and lifetime prediction for GE pMOSFETs under AC NBTI stresses
Germanium has higher hole mobility and is a candidate for replacing silicon for pMOSFETs. This work reviews the recent progresses in understanding the negative bias temperature instability (NBTI) of Ge pMOSFETs and compares it with SiON/Si devices. Both Ge and SiON/Si devices have two groups of defects: as-grown hole traps (AHT) and generated defects (GDs). The generation process, however, is different: GDs are interface-controlled for SiON/Si and dielectric-controlled for Ge devices. This leads to substantially higher GDs under DC stress than under AC stress for Ge, although they are similar for SiON/Si devices. Moreover, GDs alter their energy levels with charge status and can be reset to original precursor states after neutralization for Ge, but these processes are insignificant for SiON/Si. The impact of these differences on lifetime prediction will be presented and the defects and physical mechanism will be explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wafer size MOS2 with few monolayer synthesized by H2S sulfurization A fast and low-cost TSV/TGV filling method Finger print sensor molding thickness none destructive measurement with Terahertz technology Research of SMO process to improve the imaging capability of lithography system for 28nm node and beyond The study on the moldability and reliability of epoxy molding compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1