基于马尔可夫随机场的联合视频融合与超分辨率

Jin Chen, J. Núñez-Yáñez, A. Achim
{"title":"基于马尔可夫随机场的联合视频融合与超分辨率","authors":"Jin Chen, J. Núñez-Yáñez, A. Achim","doi":"10.1109/ICIP.2014.7025431","DOIUrl":null,"url":null,"abstract":"In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"130 1","pages":"2150-2154"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint video fusion and super resolution based on Markov random fields\",\"authors\":\"Jin Chen, J. Núñez-Yáñez, A. Achim\",\"doi\":\"10.1109/ICIP.2014.7025431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"130 1\",\"pages\":\"2150-2154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种视频融合和超分辨率联合算法。该方法解决了在贝叶斯框架中从红外(IR)和可见光(VI)低分辨率(LR)图像生成高分辨率(HR)图像的问题。为了更好地保留不连续性,使用广义高斯马尔可夫随机场(MRF)来表示先验。实验结果表明,该方法可以有效地恢复可见光和红外波段的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint video fusion and super resolution based on Markov random fields
In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1