{"title":"基于马尔可夫随机场的联合视频融合与超分辨率","authors":"Jin Chen, J. Núñez-Yáñez, A. Achim","doi":"10.1109/ICIP.2014.7025431","DOIUrl":null,"url":null,"abstract":"In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"130 1","pages":"2150-2154"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint video fusion and super resolution based on Markov random fields\",\"authors\":\"Jin Chen, J. Núñez-Yáñez, A. Achim\",\"doi\":\"10.1109/ICIP.2014.7025431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"130 1\",\"pages\":\"2150-2154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint video fusion and super resolution based on Markov random fields
In this paper, a joint video fusion and super-resolution algorithm is proposed. The method addresses the problem of generating a high-resolution (HR) image from infrared (IR) and visible (VI) low-resolution (LR) images, in a Bayesian framework. In order to preserve better the discontinuities, a Generalized Gaussian Markov Random Field (MRF) is used to formulate the prior. Experimental results demonstrate that information from both visible and infrared bands is recovered from the LR frames in an effective way.