J. Catacutan, Ma. Socorro Edden P. Subejano, Gil M Penuliar
{"title":"酒井乳杆菌L14对空肠弯曲杆菌DC3的体内外活性研究","authors":"J. Catacutan, Ma. Socorro Edden P. Subejano, Gil M Penuliar","doi":"10.2478/jvetres-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract Introduction Domestic poultry is a natural reservoir of Campylobacter, the host–pathogen interaction being predominantly asymptomatic. This study investigated whether chickens remain asymptomatic partly because of lactic acid bacteria (LAB). Material and Methods Campylobacter spp. and LAB were isolated from the gut of poultry chickens using enrichment and screening assays and were identified via rDNA sequencing. The C. jejuni DC3 isolate was grown in different cell-free supernatants (CFS) generated from a priority LAB isolate. An in vivo challenge involving the C. jejuni and LAB isolates using a chicken model was performed to confirm the in vitro findings. Results Twelve presumptive LAB isolates had anti-C. jejuni activity based on cross-streak and agar plug assays, with Lactobacillus sakei L14 isolate exhibiting the highest activity. Inhibition by L. sakei L14 CFS of the growth of C. jejuni occurred in a dose-dependent manner. Campylobacter jejuni DC3 inhibition was most evident in CFS harvested at 72 h and produced by co-culture with the pathogen. Neutralisation of the CFS abrogated the observed inhibition. Co-infection with C. jejuni DC3 and L. sakei L14 in vivo, however, failed to inhibit C. jejuni colonisation in chickens. Conclusion The results suggest that the anti-C. jejuni effect of L. sakei L14 in chickens may be due to mechanisms other than direct inhibition of growth.","PeriodicalId":54685,"journal":{"name":"Onderstepoort Journal of Veterinary Research","volume":"46 1","pages":"85 - 94"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro and in Vivo Activity of Lactobacillus Sakei L14 Strain Against Campylobacter Jejuni DC3 Strain\",\"authors\":\"J. Catacutan, Ma. Socorro Edden P. Subejano, Gil M Penuliar\",\"doi\":\"10.2478/jvetres-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction Domestic poultry is a natural reservoir of Campylobacter, the host–pathogen interaction being predominantly asymptomatic. This study investigated whether chickens remain asymptomatic partly because of lactic acid bacteria (LAB). Material and Methods Campylobacter spp. and LAB were isolated from the gut of poultry chickens using enrichment and screening assays and were identified via rDNA sequencing. The C. jejuni DC3 isolate was grown in different cell-free supernatants (CFS) generated from a priority LAB isolate. An in vivo challenge involving the C. jejuni and LAB isolates using a chicken model was performed to confirm the in vitro findings. Results Twelve presumptive LAB isolates had anti-C. jejuni activity based on cross-streak and agar plug assays, with Lactobacillus sakei L14 isolate exhibiting the highest activity. Inhibition by L. sakei L14 CFS of the growth of C. jejuni occurred in a dose-dependent manner. Campylobacter jejuni DC3 inhibition was most evident in CFS harvested at 72 h and produced by co-culture with the pathogen. Neutralisation of the CFS abrogated the observed inhibition. Co-infection with C. jejuni DC3 and L. sakei L14 in vivo, however, failed to inhibit C. jejuni colonisation in chickens. Conclusion The results suggest that the anti-C. jejuni effect of L. sakei L14 in chickens may be due to mechanisms other than direct inhibition of growth.\",\"PeriodicalId\":54685,\"journal\":{\"name\":\"Onderstepoort Journal of Veterinary Research\",\"volume\":\"46 1\",\"pages\":\"85 - 94\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onderstepoort Journal of Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/jvetres-2022-0015\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onderstepoort Journal of Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/jvetres-2022-0015","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
In Vitro and in Vivo Activity of Lactobacillus Sakei L14 Strain Against Campylobacter Jejuni DC3 Strain
Abstract Introduction Domestic poultry is a natural reservoir of Campylobacter, the host–pathogen interaction being predominantly asymptomatic. This study investigated whether chickens remain asymptomatic partly because of lactic acid bacteria (LAB). Material and Methods Campylobacter spp. and LAB were isolated from the gut of poultry chickens using enrichment and screening assays and were identified via rDNA sequencing. The C. jejuni DC3 isolate was grown in different cell-free supernatants (CFS) generated from a priority LAB isolate. An in vivo challenge involving the C. jejuni and LAB isolates using a chicken model was performed to confirm the in vitro findings. Results Twelve presumptive LAB isolates had anti-C. jejuni activity based on cross-streak and agar plug assays, with Lactobacillus sakei L14 isolate exhibiting the highest activity. Inhibition by L. sakei L14 CFS of the growth of C. jejuni occurred in a dose-dependent manner. Campylobacter jejuni DC3 inhibition was most evident in CFS harvested at 72 h and produced by co-culture with the pathogen. Neutralisation of the CFS abrogated the observed inhibition. Co-infection with C. jejuni DC3 and L. sakei L14 in vivo, however, failed to inhibit C. jejuni colonisation in chickens. Conclusion The results suggest that the anti-C. jejuni effect of L. sakei L14 in chickens may be due to mechanisms other than direct inhibition of growth.
期刊介绍:
The Onderstepoort Journal of Veterinary Research, is the official publication of the Onderstepoort Veterinary Institute. While it considers submissions from any geographic region, its focus is on Africa and the infectious and parasitic diseases and disease vectors that affect livestock and wildlife on the continent.