在单处理器上调度实时垃圾收集

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computer Systems Pub Date : 2011-08-01 DOI:10.1145/2003690.2003692
T. Kalibera, F. Pizlo, Antony Lloyd Hosking, J. Vitek
{"title":"在单处理器上调度实时垃圾收集","authors":"T. Kalibera, F. Pizlo, Antony Lloyd Hosking, J. Vitek","doi":"10.1145/2003690.2003692","DOIUrl":null,"url":null,"abstract":"Managed languages such as Java and C# are increasingly being considered for hard real-time applications because of their productivity and software engineering advantages. Automatic memory management, or garbage collection, is a key enabler for robust, reusable libraries, yet remains a challenge for analysis and implementation of real-time execution environments. This article comprehensively compares leading approaches to hard real-time garbage collection. There are many design decisions involved in selecting a real-time garbage collection algorithm. For time-based garbage collectors on uniprocessors one must choose whether to use periodic, slack-based or hybrid scheduling. A significant impediment to valid experimental comparison of such choices is that commercial implementations use completely different proprietary infrastructures. We present Minuteman, a framework for experimenting with real-time collection algorithms in the context of a high-performance execution environment for real-time Java. We provide the first comparison of the approaches, both experimentally using realistic workloads, and analytically in terms of schedulability.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"27 1","pages":"8:1-8:29"},"PeriodicalIF":2.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Scheduling real-time garbage collection on uniprocessors\",\"authors\":\"T. Kalibera, F. Pizlo, Antony Lloyd Hosking, J. Vitek\",\"doi\":\"10.1145/2003690.2003692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managed languages such as Java and C# are increasingly being considered for hard real-time applications because of their productivity and software engineering advantages. Automatic memory management, or garbage collection, is a key enabler for robust, reusable libraries, yet remains a challenge for analysis and implementation of real-time execution environments. This article comprehensively compares leading approaches to hard real-time garbage collection. There are many design decisions involved in selecting a real-time garbage collection algorithm. For time-based garbage collectors on uniprocessors one must choose whether to use periodic, slack-based or hybrid scheduling. A significant impediment to valid experimental comparison of such choices is that commercial implementations use completely different proprietary infrastructures. We present Minuteman, a framework for experimenting with real-time collection algorithms in the context of a high-performance execution environment for real-time Java. We provide the first comparison of the approaches, both experimentally using realistic workloads, and analytically in terms of schedulability.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"27 1\",\"pages\":\"8:1-8:29\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2003690.2003692\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2003690.2003692","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

摘要

托管语言(如Java和c#)由于其生产力和软件工程优势,越来越多地被考虑用于硬实时应用程序。自动内存管理或垃圾收集是健壮的、可重用的库的关键支持因素,但对于实时执行环境的分析和实现来说仍然是一个挑战。本文全面比较了硬实时垃圾收集的主要方法。选择实时垃圾收集算法涉及许多设计决策。对于单处理器上基于时间的垃圾收集器,必须选择是使用周期性调度、基于空闲调度还是混合调度。对这些选择进行有效实验比较的一个重大障碍是,商业实现使用完全不同的专有基础设施。我们提出Minuteman,这是一个框架,用于在实时Java的高性能执行环境中实验实时收集算法。我们首先对这两种方法进行比较,实验上使用实际工作负载,分析上使用可调度性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scheduling real-time garbage collection on uniprocessors
Managed languages such as Java and C# are increasingly being considered for hard real-time applications because of their productivity and software engineering advantages. Automatic memory management, or garbage collection, is a key enabler for robust, reusable libraries, yet remains a challenge for analysis and implementation of real-time execution environments. This article comprehensively compares leading approaches to hard real-time garbage collection. There are many design decisions involved in selecting a real-time garbage collection algorithm. For time-based garbage collectors on uniprocessors one must choose whether to use periodic, slack-based or hybrid scheduling. A significant impediment to valid experimental comparison of such choices is that commercial implementations use completely different proprietary infrastructures. We present Minuteman, a framework for experimenting with real-time collection algorithms in the context of a high-performance execution environment for real-time Java. We provide the first comparison of the approaches, both experimentally using realistic workloads, and analytically in terms of schedulability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computer Systems
ACM Transactions on Computer Systems 工程技术-计算机:理论方法
CiteScore
4.00
自引率
0.00%
发文量
7
审稿时长
1 months
期刊介绍: ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized. TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.
期刊最新文献
PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation Trinity: High-Performance and Reliable Mobile Emulation through Graphics Projection Hardware-software Collaborative Tiered-memory Management Framework for Virtualization Diciclo: Flexible User-level Services for Efficient Multitenant Isolation Modeling the Interplay between Loop Tiling and Fusion in Optimizing Compilers Using Affine Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1