变化的环境和更生态的种植制度对向日葵形态的新挑战

OCL Pub Date : 2021-01-01 DOI:10.1051/OCL/2021016
P. Debaeke, P. Casadebaig, N. Langlade
{"title":"变化的环境和更生态的种植制度对向日葵形态的新挑战","authors":"P. Debaeke, P. Casadebaig, N. Langlade","doi":"10.1051/OCL/2021016","DOIUrl":null,"url":null,"abstract":"As a rainfed spring-sown crop, sunflower (Helianthus annuus L.) is increasingly exposed to negative impacts of climate change, especially to high temperatures and drought stress. Incremental, systemic and transformative adaptations have been suggested for reducing the crop vulnerability to these stressful conditions. In addition, innovative cropping systems based on low-input management, organic farming, soil and water conservation practices, intercropping, double-cropping, and/or agroforestry are undergoing marked in agriculture. Because of its plasticity and low-input requirements (nitrogen, water, pesticides), sunflower crop is likely to take part to these new agroecological systems. Aside from current production outputs (yield, oil and cake), ecosystem services (e.g. bee feeding, soil phytoremediation…), and non-food industrial uses are now expected externalities for the crop. The combination of climatic and societal contexts could deeply modify the characteristics of genotypes to be cultivated in the main production areas (either traditional or adoptive). After reviewing these changes, we identify how innovative cropping systems and new environments could modify the traits classically considered up to now, especially in relation to expected ecosystem services. Finally, we consider how research could provide methods to help identifying traits of interest and design ideotypes.","PeriodicalId":19440,"journal":{"name":"OCL","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"New challenges for sunflower ideotyping in changing environments and more ecological cropping systems\",\"authors\":\"P. Debaeke, P. Casadebaig, N. Langlade\",\"doi\":\"10.1051/OCL/2021016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a rainfed spring-sown crop, sunflower (Helianthus annuus L.) is increasingly exposed to negative impacts of climate change, especially to high temperatures and drought stress. Incremental, systemic and transformative adaptations have been suggested for reducing the crop vulnerability to these stressful conditions. In addition, innovative cropping systems based on low-input management, organic farming, soil and water conservation practices, intercropping, double-cropping, and/or agroforestry are undergoing marked in agriculture. Because of its plasticity and low-input requirements (nitrogen, water, pesticides), sunflower crop is likely to take part to these new agroecological systems. Aside from current production outputs (yield, oil and cake), ecosystem services (e.g. bee feeding, soil phytoremediation…), and non-food industrial uses are now expected externalities for the crop. The combination of climatic and societal contexts could deeply modify the characteristics of genotypes to be cultivated in the main production areas (either traditional or adoptive). After reviewing these changes, we identify how innovative cropping systems and new environments could modify the traits classically considered up to now, especially in relation to expected ecosystem services. Finally, we consider how research could provide methods to help identifying traits of interest and design ideotypes.\",\"PeriodicalId\":19440,\"journal\":{\"name\":\"OCL\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/OCL/2021016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/OCL/2021016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

向日葵(Helianthus annuus L.)作为雨养春播作物,越来越多地受到气候变化的负面影响,特别是高温和干旱胁迫。已经提出了渐进的、系统的和变革性的适应措施,以减少作物对这些压力条件的脆弱性。此外,以低投入管理、有机农业、水土保持做法、间作、复作和/或农林业为基础的创新种植制度正在农业领域取得显著进展。由于其可塑性和低投入需求(氮、水、农药),向日葵作物很可能参与这些新的农业生态系统。除了目前的生产产出(产量、油和蛋糕),生态系统服务(如蜜蜂饲养、土壤植物修复……)和非食品工业用途现在是该作物的预期外部效应。气候和社会环境的结合可以深刻地改变在主要产区(传统或采用)种植的基因型的特征。在回顾了这些变化之后,我们确定了创新的种植制度和新的环境如何改变到目前为止被认为是经典的特征,特别是与预期的生态系统服务有关的特征。最后,我们考虑研究如何提供方法来帮助识别感兴趣的特征和设计理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New challenges for sunflower ideotyping in changing environments and more ecological cropping systems
As a rainfed spring-sown crop, sunflower (Helianthus annuus L.) is increasingly exposed to negative impacts of climate change, especially to high temperatures and drought stress. Incremental, systemic and transformative adaptations have been suggested for reducing the crop vulnerability to these stressful conditions. In addition, innovative cropping systems based on low-input management, organic farming, soil and water conservation practices, intercropping, double-cropping, and/or agroforestry are undergoing marked in agriculture. Because of its plasticity and low-input requirements (nitrogen, water, pesticides), sunflower crop is likely to take part to these new agroecological systems. Aside from current production outputs (yield, oil and cake), ecosystem services (e.g. bee feeding, soil phytoremediation…), and non-food industrial uses are now expected externalities for the crop. The combination of climatic and societal contexts could deeply modify the characteristics of genotypes to be cultivated in the main production areas (either traditional or adoptive). After reviewing these changes, we identify how innovative cropping systems and new environments could modify the traits classically considered up to now, especially in relation to expected ecosystem services. Finally, we consider how research could provide methods to help identifying traits of interest and design ideotypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OCL
OCL
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the sensory properties, volatile aroma compounds and functional food potentials of cold-press produced mahaleb (Prunus mahaleb L.) seed oil Soybean oleosome-based oleogels via polymer-bridging based structuring. Mechanical properties at large deformations Labor productivity assessment of three different mechanized harvest systems in Colombian oil palm crops Effect of extraction process on quality of oil from Asphodelus tenuifolius seeds Response of oil producing camelina (Camelina sativa L.) crop to different agroecology and rate of NP fertilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1