机器学习在原油产量预测中的应用

Okechukwu Innocent
{"title":"机器学习在原油产量预测中的应用","authors":"Okechukwu Innocent","doi":"10.2118/207079-ms","DOIUrl":null,"url":null,"abstract":"\n The production of oil is of great and immense significance as a source of energy worldwide. The major factors affecting the production volume of oil is classified into two groups namely the geological and the human factor. Each group comprises of factors affecting oilfield production volume. The challenge in this project is to find the variable for the crude oil production volume in an oilfield because there are numerous factors affecting the crude oil production volume in an oilfield. The objective of this paper is to provide a more accurate and efficient solution on how to predict the oil production volume.\n Furthermore, Machine Learning algorithm called Multiple Linear Regression was developed using Python programming Language to predict the production volume of oil in an oilfield. The model was developed and fitted to train and test the factors that affect and influence the oil production volume. After a several studies have been made, the affecting factors were provided from the oilfield which would be trained and tested in order to model the relationship between predictor variable and response variable which are the significant affecting factors and the oil production volume respectively. The predictor variables are the startup number of wells, the recovery percent of previous year, the injected water volume of previous year and the oil moisture content of previous year. The predictor variable is the oil production volume.\n Moreover, the model was found to possess greater utility in predicting the production volume of oil as it yielded an oil production volume output with an accuracy of 98 percent. The relationship between oil production volume and the affecting factors was observed and drawn to a perfect conclusion.\n This model can be of immense value in the oil and gas industry if implemented because of its ability to predict oilfield output more accurately. It is an invaluable and very efficient model for the oilfield manager and oil production manager.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Machine Learning in Predicting Crude Oil Production Volume\",\"authors\":\"Okechukwu Innocent\",\"doi\":\"10.2118/207079-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The production of oil is of great and immense significance as a source of energy worldwide. The major factors affecting the production volume of oil is classified into two groups namely the geological and the human factor. Each group comprises of factors affecting oilfield production volume. The challenge in this project is to find the variable for the crude oil production volume in an oilfield because there are numerous factors affecting the crude oil production volume in an oilfield. The objective of this paper is to provide a more accurate and efficient solution on how to predict the oil production volume.\\n Furthermore, Machine Learning algorithm called Multiple Linear Regression was developed using Python programming Language to predict the production volume of oil in an oilfield. The model was developed and fitted to train and test the factors that affect and influence the oil production volume. After a several studies have been made, the affecting factors were provided from the oilfield which would be trained and tested in order to model the relationship between predictor variable and response variable which are the significant affecting factors and the oil production volume respectively. The predictor variables are the startup number of wells, the recovery percent of previous year, the injected water volume of previous year and the oil moisture content of previous year. The predictor variable is the oil production volume.\\n Moreover, the model was found to possess greater utility in predicting the production volume of oil as it yielded an oil production volume output with an accuracy of 98 percent. The relationship between oil production volume and the affecting factors was observed and drawn to a perfect conclusion.\\n This model can be of immense value in the oil and gas industry if implemented because of its ability to predict oilfield output more accurately. It is an invaluable and very efficient model for the oilfield manager and oil production manager.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207079-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207079-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

石油的生产作为一种能源在世界范围内具有巨大的意义。影响石油产量的主要因素可分为地质因素和人为因素两大类。每一组由影响油田产量的因素组成。由于影响油田原油产量的因素很多,因此该项目面临的挑战是找到油田原油产量的变量。本文的目的是为如何预测石油产量提供一个更准确、更有效的解决方案。此外,使用Python编程语言开发了称为多元线性回归的机器学习算法,用于预测油田的石油产量。该模型的建立和拟合是为了训练和测试影响产油量的因素。经过多次研究,给出了油田的影响因素,并对影响因素进行训练和测试,分别建立了预测变量和响应变量与产油量的关系模型。预测变量为开井数、前一年采收率、前一年注入水量和前一年油含水率。预测变量是产油量。此外,该模型在预测石油产量方面具有更大的效用,因为它产生的石油产量输出精度为98%。观察了采油量与影响因素之间的关系,得出了较为完善的结论。由于该模型能够更准确地预测油田产量,因此在油气行业中具有巨大的价值。对于油田管理者和石油生产管理者来说,这是一个非常宝贵和高效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Machine Learning in Predicting Crude Oil Production Volume
The production of oil is of great and immense significance as a source of energy worldwide. The major factors affecting the production volume of oil is classified into two groups namely the geological and the human factor. Each group comprises of factors affecting oilfield production volume. The challenge in this project is to find the variable for the crude oil production volume in an oilfield because there are numerous factors affecting the crude oil production volume in an oilfield. The objective of this paper is to provide a more accurate and efficient solution on how to predict the oil production volume. Furthermore, Machine Learning algorithm called Multiple Linear Regression was developed using Python programming Language to predict the production volume of oil in an oilfield. The model was developed and fitted to train and test the factors that affect and influence the oil production volume. After a several studies have been made, the affecting factors were provided from the oilfield which would be trained and tested in order to model the relationship between predictor variable and response variable which are the significant affecting factors and the oil production volume respectively. The predictor variables are the startup number of wells, the recovery percent of previous year, the injected water volume of previous year and the oil moisture content of previous year. The predictor variable is the oil production volume. Moreover, the model was found to possess greater utility in predicting the production volume of oil as it yielded an oil production volume output with an accuracy of 98 percent. The relationship between oil production volume and the affecting factors was observed and drawn to a perfect conclusion. This model can be of immense value in the oil and gas industry if implemented because of its ability to predict oilfield output more accurately. It is an invaluable and very efficient model for the oilfield manager and oil production manager.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Production and Performance Evaluation of Biodetergents as an Alternative to Conventional Drilling Detergent Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction The Limitation of Reservoir Saturation Logging Tool in a Case of a Deeper Reservoir Flow into a Shallower Reservoir Within the Same Wellbore Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance Understanding the Impacts of Backpressure & Risk Analysis of Different Gas Hydrate Blockage Scenarios on the Integrity of Subsea Flowlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1