{"title":"磁场对硅酸盐水泥破碎分散性及水泥石抗拉强度影响的研究","authors":"R. Ibragimov, E. Korolev, E. Khorkov, L. Gimranov","doi":"10.28991/cej-2023-09-05-015","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone\",\"authors\":\"R. Ibragimov, E. Korolev, E. Khorkov, L. Gimranov\",\"doi\":\"10.28991/cej-2023-09-05-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"224 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-05-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-05-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone
This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.