一种合成激光雷达生成自动驾驶汽车感知注释数据集的方法

Jorge Beltrán, Irene Cortés, Alejandro Barrera, Jesús Urdiales, Carlos Guindel, F. García, A. D. L. Escalera
{"title":"一种合成激光雷达生成自动驾驶汽车感知注释数据集的方法","authors":"Jorge Beltrán, Irene Cortés, Alejandro Barrera, Jesús Urdiales, Carlos Guindel, F. García, A. D. L. Escalera","doi":"10.1109/ITSC.2019.8917176","DOIUrl":null,"url":null,"abstract":"LiDAR devices have become a key sensor for autonomous vehicles perception due to their ability to capture reliable geometry information. Indeed, approaches processing LiDAR data have shown an impressive accuracy for 3D object detection tasks, outperforming methods solely based on image inputs. However, the wide diversity of on-board sensor configurations makes the deployment of published algorithms into real platforms a hard task, due to the scarcity of annotated datasets containing laser scans. We present a method to generate new point clouds datasets as captured by a real LiDAR device. The proposed pipeline makes use of multiple frames to perform an accurate 3D reconstruction of the scene in the spherical coordinates system that enables the simulation of the sweeps of a virtual LiDAR sensor, configurable both in location and inner specifications. The similarity between real data and the generated synthetic clouds is assessed through a set of experiments performed using KITTI Depth and Object Benchmarks.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"239 1","pages":"1091-1096"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Method for Synthetic LiDAR Generation to Create Annotated Datasets for Autonomous Vehicles Perception\",\"authors\":\"Jorge Beltrán, Irene Cortés, Alejandro Barrera, Jesús Urdiales, Carlos Guindel, F. García, A. D. L. Escalera\",\"doi\":\"10.1109/ITSC.2019.8917176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LiDAR devices have become a key sensor for autonomous vehicles perception due to their ability to capture reliable geometry information. Indeed, approaches processing LiDAR data have shown an impressive accuracy for 3D object detection tasks, outperforming methods solely based on image inputs. However, the wide diversity of on-board sensor configurations makes the deployment of published algorithms into real platforms a hard task, due to the scarcity of annotated datasets containing laser scans. We present a method to generate new point clouds datasets as captured by a real LiDAR device. The proposed pipeline makes use of multiple frames to perform an accurate 3D reconstruction of the scene in the spherical coordinates system that enables the simulation of the sweeps of a virtual LiDAR sensor, configurable both in location and inner specifications. The similarity between real data and the generated synthetic clouds is assessed through a set of experiments performed using KITTI Depth and Object Benchmarks.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"239 1\",\"pages\":\"1091-1096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于能够捕获可靠的几何信息,激光雷达设备已成为自动驾驶汽车感知的关键传感器。事实上,处理激光雷达数据的方法在3D目标检测任务中显示出令人印象深刻的准确性,优于仅基于图像输入的方法。然而,由于缺少包含激光扫描的带注释的数据集,机载传感器配置的多样性使得将发布的算法部署到实际平台上成为一项艰巨的任务。我们提出了一种生成由真实激光雷达设备捕获的新点云数据集的方法。拟议的管道利用多帧在球坐标系统中对场景进行精确的3D重建,从而可以模拟虚拟LiDAR传感器的扫描,可在位置和内部规格上进行配置。通过使用KITTI深度和对象基准进行的一组实验,评估了真实数据与生成的合成云之间的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Synthetic LiDAR Generation to Create Annotated Datasets for Autonomous Vehicles Perception
LiDAR devices have become a key sensor for autonomous vehicles perception due to their ability to capture reliable geometry information. Indeed, approaches processing LiDAR data have shown an impressive accuracy for 3D object detection tasks, outperforming methods solely based on image inputs. However, the wide diversity of on-board sensor configurations makes the deployment of published algorithms into real platforms a hard task, due to the scarcity of annotated datasets containing laser scans. We present a method to generate new point clouds datasets as captured by a real LiDAR device. The proposed pipeline makes use of multiple frames to perform an accurate 3D reconstruction of the scene in the spherical coordinates system that enables the simulation of the sweeps of a virtual LiDAR sensor, configurable both in location and inner specifications. The similarity between real data and the generated synthetic clouds is assessed through a set of experiments performed using KITTI Depth and Object Benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1