多元线性回归中降秩部分包络模型的有效估计

Pub Date : 2021-04-01 DOI:10.1142/s2010326321500246
Jing Zhang, Zhensheng Huang, Yan Xiong
{"title":"多元线性回归中降秩部分包络模型的有效估计","authors":"Jing Zhang, Zhensheng Huang, Yan Xiong","doi":"10.1142/s2010326321500246","DOIUrl":null,"url":null,"abstract":"In order to further improve the efficiency of parameter estimation and reduce the number of estimated parameters, we adopt dimension reduction ideas of partial envelope model proposed by [Su and Cook, Partial envelopes for efficient estimation in multivariate linear regression, Biometrika 98 (2011) 133–146.] to center on some predictors of special interest. Based on the research results of [Cook et al., Envelopes and reduced-rank regression, Biometrika 102 (2015) 439–456.], we combine partial envelopes with reduced-rank regression to form reduced-rank partial envelope model which can reduce dimension efficiently. This method has the potential to perform better than both. Further, we demonstrate maximum likelihood estimators for the reduced-rank partial envelope model parameters, and exhibit asymptotic distribution and theoretical properties under normality. Meanwhile, we show selections of rank and partial envelope dimension. At last, under the normal and non-normal error distributions, simulation studies are carried out to compare our proposed reduced-rank partial envelope model with the other four methods, including ordinary least squares, reduced-rank regression, partial envelope model and reduced-rank envelope model. A real data analysis is also given to support the theoretic claims. The reduced-rank partial envelope estimators have shown promising performance in extensive simulation studies and real data analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation of reduced-rank partial envelope model in multivariate linear regression\",\"authors\":\"Jing Zhang, Zhensheng Huang, Yan Xiong\",\"doi\":\"10.1142/s2010326321500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to further improve the efficiency of parameter estimation and reduce the number of estimated parameters, we adopt dimension reduction ideas of partial envelope model proposed by [Su and Cook, Partial envelopes for efficient estimation in multivariate linear regression, Biometrika 98 (2011) 133–146.] to center on some predictors of special interest. Based on the research results of [Cook et al., Envelopes and reduced-rank regression, Biometrika 102 (2015) 439–456.], we combine partial envelopes with reduced-rank regression to form reduced-rank partial envelope model which can reduce dimension efficiently. This method has the potential to perform better than both. Further, we demonstrate maximum likelihood estimators for the reduced-rank partial envelope model parameters, and exhibit asymptotic distribution and theoretical properties under normality. Meanwhile, we show selections of rank and partial envelope dimension. At last, under the normal and non-normal error distributions, simulation studies are carried out to compare our proposed reduced-rank partial envelope model with the other four methods, including ordinary least squares, reduced-rank regression, partial envelope model and reduced-rank envelope model. A real data analysis is also given to support the theoretic claims. The reduced-rank partial envelope estimators have shown promising performance in extensive simulation studies and real data analysis.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326321500246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高参数估计的效率,减少估计参数的数量,我们采用了[Su和Cook, partial envelope for efficient estimation In multivariate linear regression, Biometrika 98(2011) 133-146]提出的偏包膜模型降维思想。集中在一些特别感兴趣的预测因素上。基于Cook等人的研究结果,包膜和降秩回归,Biometrika 102(2015) 439-456。,我们将偏包络与降阶回归相结合,形成了能有效降维的降阶偏包络模型。这种方法有可能比这两种方法表现得更好。进一步,我们证明了降阶部分包络模型参数的极大似然估计,并证明了在正态下的渐近分布和理论性质。同时,给出了等级和部分包络维数的选择。最后,在正态和非正态误差分布下,将本文提出的降阶部分包络模型与普通最小二乘、降阶回归、部分包络模型和降阶包络模型进行了仿真研究。并给出了一个实际数据分析来支持理论结论。降阶部分包络估计在大量的仿真研究和实际数据分析中显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Efficient estimation of reduced-rank partial envelope model in multivariate linear regression
In order to further improve the efficiency of parameter estimation and reduce the number of estimated parameters, we adopt dimension reduction ideas of partial envelope model proposed by [Su and Cook, Partial envelopes for efficient estimation in multivariate linear regression, Biometrika 98 (2011) 133–146.] to center on some predictors of special interest. Based on the research results of [Cook et al., Envelopes and reduced-rank regression, Biometrika 102 (2015) 439–456.], we combine partial envelopes with reduced-rank regression to form reduced-rank partial envelope model which can reduce dimension efficiently. This method has the potential to perform better than both. Further, we demonstrate maximum likelihood estimators for the reduced-rank partial envelope model parameters, and exhibit asymptotic distribution and theoretical properties under normality. Meanwhile, we show selections of rank and partial envelope dimension. At last, under the normal and non-normal error distributions, simulation studies are carried out to compare our proposed reduced-rank partial envelope model with the other four methods, including ordinary least squares, reduced-rank regression, partial envelope model and reduced-rank envelope model. A real data analysis is also given to support the theoretic claims. The reduced-rank partial envelope estimators have shown promising performance in extensive simulation studies and real data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1