{"title":"RCH","authors":"Guodong Li, R. Ma, Xinyu Liu, Yue Wang, Lin Zhang","doi":"10.1145/3410530.3414322","DOIUrl":null,"url":null,"abstract":"Air pollution has become one of the major threats to human health. Conventional approaches for air pollution monitoring use precise professional devices, but cannot achieve dense deployment due to high cost. Therefore, systems consisting of low-cost sensors are applied as a supplement to obtain fine-grained pollution information. In order to maintain the accuracy of these low-cost sensors, it is essential to calibrate them to minimize the impact from sensor drifts. Existing field calibration methods utilize the real-time data from spatially-adjacent official air quality stations as reference. However, the real-time reference is not always accessible under existing station deployment. In this paper, we propose the Robust Calibration approach using Historical data (RCH) for low-cost air quality sensors. Our method corrects the sensor drift by adapting sensitivity and offset based on pollutant's concentration distribution. Experiments on NO2 data from real-world deployment in Foshan, China show that RCH has the similar performance compared with existing field calibration methods using real-time and spatially-adjacent references. It demonstrates that RCH can improve the accuracy and consistency of low-cost air quality sensors without the help of real-time and nearby reference data.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"RCH\",\"authors\":\"Guodong Li, R. Ma, Xinyu Liu, Yue Wang, Lin Zhang\",\"doi\":\"10.1145/3410530.3414322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution has become one of the major threats to human health. Conventional approaches for air pollution monitoring use precise professional devices, but cannot achieve dense deployment due to high cost. Therefore, systems consisting of low-cost sensors are applied as a supplement to obtain fine-grained pollution information. In order to maintain the accuracy of these low-cost sensors, it is essential to calibrate them to minimize the impact from sensor drifts. Existing field calibration methods utilize the real-time data from spatially-adjacent official air quality stations as reference. However, the real-time reference is not always accessible under existing station deployment. In this paper, we propose the Robust Calibration approach using Historical data (RCH) for low-cost air quality sensors. Our method corrects the sensor drift by adapting sensitivity and offset based on pollutant's concentration distribution. Experiments on NO2 data from real-world deployment in Foshan, China show that RCH has the similar performance compared with existing field calibration methods using real-time and spatially-adjacent references. It demonstrates that RCH can improve the accuracy and consistency of low-cost air quality sensors without the help of real-time and nearby reference data.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RCH
Air pollution has become one of the major threats to human health. Conventional approaches for air pollution monitoring use precise professional devices, but cannot achieve dense deployment due to high cost. Therefore, systems consisting of low-cost sensors are applied as a supplement to obtain fine-grained pollution information. In order to maintain the accuracy of these low-cost sensors, it is essential to calibrate them to minimize the impact from sensor drifts. Existing field calibration methods utilize the real-time data from spatially-adjacent official air quality stations as reference. However, the real-time reference is not always accessible under existing station deployment. In this paper, we propose the Robust Calibration approach using Historical data (RCH) for low-cost air quality sensors. Our method corrects the sensor drift by adapting sensitivity and offset based on pollutant's concentration distribution. Experiments on NO2 data from real-world deployment in Foshan, China show that RCH has the similar performance compared with existing field calibration methods using real-time and spatially-adjacent references. It demonstrates that RCH can improve the accuracy and consistency of low-cost air quality sensors without the help of real-time and nearby reference data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using gamification to create and label photos that are challenging for computer vision and people Pose evaluation for dance learning application using joint position and angular similarity SParking: a win-win data-driven contract parking sharing system HeadgearX Blink rate variability: a marker of sustained attention during a visual task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1