{"title":"具有零副本集成的高效数据管理和统计","authors":"Jonathan Lajus, H. Mühleisen","doi":"10.1145/2618243.2618265","DOIUrl":null,"url":null,"abstract":"Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"12:1-12:10"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Efficient data management and statistics with zero-copy integration\",\"authors\":\"Jonathan Lajus, H. Mühleisen\",\"doi\":\"10.1145/2618243.2618265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"27 1\",\"pages\":\"12:1-12:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

长期以来,统计分析师一直在努力应对不断增长的数据量。虽然专门的数据管理系统(如关系数据库)能够处理这些数据,但统计分析工具在表达复杂的数据分析方面要方便得多。这两类系统的集成有可能克服数据管理问题,同时保持分析的便利性。但是,必须密切关注实现开销,例如序列化。在本文中,我们提出了数据管理和分析工具的进程集成。此外,我们认为零拷贝集成是可行的,因为无处不在的c风格数组包含本机类型。我们讨论了这种集成的一般概念,并基于列式关系数据库MonetDB和统计计算的R环境给出了这种集成的原型。我们在一系列常见数据管理任务的微基准测试中评估了该原型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient data management and statistics with zero-copy integration
Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1