存储耦合核联合循环

W. Conlon, C. Forsberg
{"title":"存储耦合核联合循环","authors":"W. Conlon, C. Forsberg","doi":"10.1115/1.4055277","DOIUrl":null,"url":null,"abstract":"\n A new design paradigm for nuclear power plants is needed to complement the increasing adoption of low marginal cost variable renewable energy resources. The situation is reflected in the wholesale electricity price–duration curve with four distinct economic opportunities: (a) a hundred or so hours per year of high-value peaking power; (b) about 4000–5000 h of moderate electric prices; (c) about 2000 h per year when renewables set the marginal price at or near zero; and (d) about 1000 h of flexible ramping between the b and c regions. The current approach to the low-carbon energy transition reduces the need for baseload power and requires curtailment of conventional, nuclear, and even renewable generation, decreasing their capacity factors and increasing their fixed charges for electricity generation. Flexible low-carbon dispatchable power plants capable of daily cycling along with storage and time shifting of low-cost nondispatchable renewable power will be needed. Although nuclear power plants have demonstrated load-following capability, cycling can be limited by reactor kinetics (xenon poisoning) as well as by thermal stresses and fatigue considerations in the steam cycle. Storage of nuclear heat is hampered by the relatively low operating temperatures of existing nuclear reactors (but not advanced reactors) that lowers thermal to electric conversion efficiency, which in turn increases the required quantity of storage medium and the cost of storage. The quantity of storage medium can be reduced by integration of thermal energy storage with high-grade heat as in the liquid salt combined cycle (LSCC). The LSCC uses high-temperature gas turbine exhaust heat to increase the electricity output per unit of storage medium, uses the stored energy to add operating flexibility to a bottoming steam cycle, and substantially reduces the fuel heat rate. The low fuel heat rate improves economic competitiveness compared to alternative gas turbine-based power plants, especially when burning expensive fuels such as hydrogen. LSCC could be coupled to a nuclear power plant for time shifting both nuclear and renewable electricity and could support high utilization of a co-located hydrogen electrolysis plant. Further cost reduction could be achieved by using solid media for thermal energy storage, with the liquid salt used as a heat transfer medium.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Storage-Coupled Nuclear Combined Cycle\",\"authors\":\"W. Conlon, C. Forsberg\",\"doi\":\"10.1115/1.4055277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new design paradigm for nuclear power plants is needed to complement the increasing adoption of low marginal cost variable renewable energy resources. The situation is reflected in the wholesale electricity price–duration curve with four distinct economic opportunities: (a) a hundred or so hours per year of high-value peaking power; (b) about 4000–5000 h of moderate electric prices; (c) about 2000 h per year when renewables set the marginal price at or near zero; and (d) about 1000 h of flexible ramping between the b and c regions. The current approach to the low-carbon energy transition reduces the need for baseload power and requires curtailment of conventional, nuclear, and even renewable generation, decreasing their capacity factors and increasing their fixed charges for electricity generation. Flexible low-carbon dispatchable power plants capable of daily cycling along with storage and time shifting of low-cost nondispatchable renewable power will be needed. Although nuclear power plants have demonstrated load-following capability, cycling can be limited by reactor kinetics (xenon poisoning) as well as by thermal stresses and fatigue considerations in the steam cycle. Storage of nuclear heat is hampered by the relatively low operating temperatures of existing nuclear reactors (but not advanced reactors) that lowers thermal to electric conversion efficiency, which in turn increases the required quantity of storage medium and the cost of storage. The quantity of storage medium can be reduced by integration of thermal energy storage with high-grade heat as in the liquid salt combined cycle (LSCC). The LSCC uses high-temperature gas turbine exhaust heat to increase the electricity output per unit of storage medium, uses the stored energy to add operating flexibility to a bottoming steam cycle, and substantially reduces the fuel heat rate. The low fuel heat rate improves economic competitiveness compared to alternative gas turbine-based power plants, especially when burning expensive fuels such as hydrogen. LSCC could be coupled to a nuclear power plant for time shifting both nuclear and renewable electricity and could support high utilization of a co-located hydrogen electrolysis plant. Further cost reduction could be achieved by using solid media for thermal energy storage, with the liquid salt used as a heat transfer medium.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

需要一种新的核电站设计范例,以补充越来越多地采用低边际成本可变可再生能源。这种情况反映在批发电价-时程曲线上,有四个不同的经济机会:(a)每年100小时左右的高价值高峰电力;(b)约4000-5000小时的中等电价;(c)当可再生能源将边际价格设定为零或接近零时,每年约2000小时;(d) b区和c区之间约1000小时的柔性爬坡。目前的低碳能源转型方法减少了对基本负荷电力的需求,并要求削减常规、核能甚至可再生能源发电,降低了它们的容量系数,提高了它们的固定发电费用。需要灵活的低碳可调度电厂,能够实现低成本不可调度可再生能源的日常循环以及存储和时移。尽管核电站已经证明了负荷跟踪能力,但循环可能受到反应堆动力学(氙中毒)以及蒸汽循环中的热应力和疲劳考虑的限制。现有核反应堆(但不包括先进反应堆)的运行温度相对较低,降低了热电转换效率,从而增加了所需的存储介质数量和存储成本,这阻碍了核热的储存。通过像液盐联合循环(LSCC)那样将储热与高等级热相结合,可以减少储热介质的数量。LSCC利用高温燃气轮机废气热量来增加单位储存介质的电力输出,利用储存的能量来增加底部蒸汽循环的操作灵活性,并大大降低燃料热率。与基于替代燃气轮机的发电厂相比,低燃料热率提高了经济竞争力,特别是在燃烧氢等昂贵燃料时。LSCC可以与核电站连接,以实现核电和可再生电力的时间转换,并可以支持位于同一位置的氢电解厂的高利用率。进一步降低成本可以通过使用固体介质进行热能储存,并使用液态盐作为传热介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Storage-Coupled Nuclear Combined Cycle
A new design paradigm for nuclear power plants is needed to complement the increasing adoption of low marginal cost variable renewable energy resources. The situation is reflected in the wholesale electricity price–duration curve with four distinct economic opportunities: (a) a hundred or so hours per year of high-value peaking power; (b) about 4000–5000 h of moderate electric prices; (c) about 2000 h per year when renewables set the marginal price at or near zero; and (d) about 1000 h of flexible ramping between the b and c regions. The current approach to the low-carbon energy transition reduces the need for baseload power and requires curtailment of conventional, nuclear, and even renewable generation, decreasing their capacity factors and increasing their fixed charges for electricity generation. Flexible low-carbon dispatchable power plants capable of daily cycling along with storage and time shifting of low-cost nondispatchable renewable power will be needed. Although nuclear power plants have demonstrated load-following capability, cycling can be limited by reactor kinetics (xenon poisoning) as well as by thermal stresses and fatigue considerations in the steam cycle. Storage of nuclear heat is hampered by the relatively low operating temperatures of existing nuclear reactors (but not advanced reactors) that lowers thermal to electric conversion efficiency, which in turn increases the required quantity of storage medium and the cost of storage. The quantity of storage medium can be reduced by integration of thermal energy storage with high-grade heat as in the liquid salt combined cycle (LSCC). The LSCC uses high-temperature gas turbine exhaust heat to increase the electricity output per unit of storage medium, uses the stored energy to add operating flexibility to a bottoming steam cycle, and substantially reduces the fuel heat rate. The low fuel heat rate improves economic competitiveness compared to alternative gas turbine-based power plants, especially when burning expensive fuels such as hydrogen. LSCC could be coupled to a nuclear power plant for time shifting both nuclear and renewable electricity and could support high utilization of a co-located hydrogen electrolysis plant. Further cost reduction could be achieved by using solid media for thermal energy storage, with the liquid salt used as a heat transfer medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1