基于四元数小波系数信息准则建模的约简参考度量

A. Traoré, P. Carré, C. Olivier
{"title":"基于四元数小波系数信息准则建模的约简参考度量","authors":"A. Traoré, P. Carré, C. Olivier","doi":"10.1109/ICIP.2014.7025105","DOIUrl":null,"url":null,"abstract":"This paper proposes a new reduced-reference metric based on the modeling of Quaternionic Wavelet Transform (QWT) coefficients from Information Criteria (IC). To obtain the reduced-references, we will model the QWT coefficients using probability density functions (pdf) whose parameters are used as reduced-references. IC are proposed in order to build the optimal histograms of the QWT coefficients to get most likely pdf of these. In the mixture model, IC are also used to obtain the number of distribution. From these models, we propose a measure of degradation by comparing probability density functions of the reference image and the distributions of the degraded image of the QWT subbands. We shall demonstrate that one phase of the QWT provides relevant information in the Image Quality Assessment. Tests confirmed the potentiality of this information and showed that the QWT produces a better coefficient of correlation with the Human Visual System than the Discrete Wavelet Transform.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"41 1","pages":"526-530"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduced-reference metric based on the quaternionic wavelet coefficients modeling by information criteria\",\"authors\":\"A. Traoré, P. Carré, C. Olivier\",\"doi\":\"10.1109/ICIP.2014.7025105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new reduced-reference metric based on the modeling of Quaternionic Wavelet Transform (QWT) coefficients from Information Criteria (IC). To obtain the reduced-references, we will model the QWT coefficients using probability density functions (pdf) whose parameters are used as reduced-references. IC are proposed in order to build the optimal histograms of the QWT coefficients to get most likely pdf of these. In the mixture model, IC are also used to obtain the number of distribution. From these models, we propose a measure of degradation by comparing probability density functions of the reference image and the distributions of the degraded image of the QWT subbands. We shall demonstrate that one phase of the QWT provides relevant information in the Image Quality Assessment. Tests confirmed the potentiality of this information and showed that the QWT produces a better coefficient of correlation with the Human Visual System than the Discrete Wavelet Transform.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"41 1\",\"pages\":\"526-530\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于信息准则对四元数小波变换(QWT)系数的建模,提出了一种新的约简参考度量。为了获得约简引用,我们将使用概率密度函数(pdf)对QWT系数建模,其参数用作约简引用。为了构建QWT系数的最优直方图,以获得这些系数的最可能的pdf,提出了集成电路。在混合模型中,还使用集成电路来获得分布的数量。从这些模型中,我们提出了一种通过比较参考图像的概率密度函数和QWT子带退化图像的分布来衡量退化的方法。我们将演示量子小波变换的一个阶段在图像质量评估中提供相关信息。测试证实了这些信息的潜力,并表明QWT比离散小波变换产生更好的与人类视觉系统的相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced-reference metric based on the quaternionic wavelet coefficients modeling by information criteria
This paper proposes a new reduced-reference metric based on the modeling of Quaternionic Wavelet Transform (QWT) coefficients from Information Criteria (IC). To obtain the reduced-references, we will model the QWT coefficients using probability density functions (pdf) whose parameters are used as reduced-references. IC are proposed in order to build the optimal histograms of the QWT coefficients to get most likely pdf of these. In the mixture model, IC are also used to obtain the number of distribution. From these models, we propose a measure of degradation by comparing probability density functions of the reference image and the distributions of the degraded image of the QWT subbands. We shall demonstrate that one phase of the QWT provides relevant information in the Image Quality Assessment. Tests confirmed the potentiality of this information and showed that the QWT produces a better coefficient of correlation with the Human Visual System than the Discrete Wavelet Transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1