A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry
{"title":"流域尺度,高分辨率,水力模型和栖息地地图-鲑鱼的视角","authors":"A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry","doi":"10.1080/24705357.2020.1768600","DOIUrl":null,"url":null,"abstract":"Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Catchment-scale, high-resolution, hydraulic models and habitat maps – a salmonid's perspective\",\"authors\":\"A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry\",\"doi\":\"10.1080/24705357.2020.1768600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2020.1768600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2020.1768600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Catchment-scale, high-resolution, hydraulic models and habitat maps – a salmonid's perspective
Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.