基于改进最大切缘准则的降维肿瘤分类

Shanwen Zhang, Rongzhi Jing
{"title":"基于改进最大切缘准则的降维肿瘤分类","authors":"Shanwen Zhang, Rongzhi Jing","doi":"10.1109/ICIC.2011.148","DOIUrl":null,"url":null,"abstract":"Based on Maximum margin criterion (MMC), a new algorithm, named modified MMC, is proposed for supervised dimensionality reduction in this paper. The algorithm aims at learning a linear transformation, and aims at maximizing the average margin between classes in the projected space. After projecting, the considered pair wise points within the same class are as close as possible, while those between different classes are as far as possible. The performance on two gene expression profiles datasets demonstrates the effectiveness of the proposed method.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dimension Reduction Based on Modified Maximum Margin Criterion for Tumor Classification\",\"authors\":\"Shanwen Zhang, Rongzhi Jing\",\"doi\":\"10.1109/ICIC.2011.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Maximum margin criterion (MMC), a new algorithm, named modified MMC, is proposed for supervised dimensionality reduction in this paper. The algorithm aims at learning a linear transformation, and aims at maximizing the average margin between classes in the projected space. After projecting, the considered pair wise points within the same class are as close as possible, while those between different classes are as far as possible. The performance on two gene expression profiles datasets demonstrates the effectiveness of the proposed method.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于最大余量准则(MMC),提出了一种新的有监督降维算法——改进的MMC算法。该算法的目标是学习一个线性变换,并以最大化投影空间中类之间的平均边际为目标。投影后,同一类内考虑的对明智点尽可能接近,而不同类之间考虑的对明智点尽可能远。在两个基因表达谱数据集上的性能证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dimension Reduction Based on Modified Maximum Margin Criterion for Tumor Classification
Based on Maximum margin criterion (MMC), a new algorithm, named modified MMC, is proposed for supervised dimensionality reduction in this paper. The algorithm aims at learning a linear transformation, and aims at maximizing the average margin between classes in the projected space. After projecting, the considered pair wise points within the same class are as close as possible, while those between different classes are as far as possible. The performance on two gene expression profiles datasets demonstrates the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Method of Eliminating Gross Error of GPS Output Information Efficiency of Regional Agricultural Production Based on Data Envelopment Analysis Nonlinear Analysis of a Cantilever Elastic Beam under Non-conservative Distributed Load The Confidence-degree of Mechanical Parameters of Rock Mass and Its Reliability Test Persistence and Periodicity of Nonautonomos n-Species Cooperative System with Feedback Controls and Smith Growth for Prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1