J. Alvar-Beltrán, A. Gobin, S. Orlandini, A. Dao, A. D. Marta
{"title":"半干旱西非灌溉藜麦的气候适应能力","authors":"J. Alvar-Beltrán, A. Gobin, S. Orlandini, A. Dao, A. D. Marta","doi":"10.3354/CR01660","DOIUrl":null,"url":null,"abstract":"Quinoa (Chenopodium quinoa Willd.) is a herbaceous C3 crop that has demonstrated resilience in regions concurrently affected by climate change and food insecurity, such as sub-Saharan Africa (SSA). The photosynthetic rate and productivity of C3 crops are enhanced under increasing CO2 concentrations. We looked at future climate trends in SSA to estimate their impacts on quinoa yields in Burkina Faso. Climate projections show a temperature increase of 1.67-4.90°C under Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively by the end of the century. We demonstrate that any further climate disturbances can either be beneficial or harmful for quinoa, and modulating climate risks will depend on the decisions made at the farm level (e.g. planting date and crop choice). Crop modelling supports the identification of the most suitable transplanting dates based on future climate conditions (RCP 4.5 and 8.5), agroclimatic zones (Sahel, Soudano-Sahelian and Soudanian) and time-horizons (2020, 2025, 2050 and 2075). We show that quinoa yields can improve—when grown under irrigated conditions and transplanted in November—by about 14-20% under RCP 4.5 and by 24-33% under RCP 8.5 by 2075 across the Sahel and Soudanian agroclimatic zones, respectively. For the Soudano-Sahelian zone, the highest yield improvements (19%) are obtained when transplanting is assumed in December under RCP 8.5 by 2075. Overall, the findings of this work encourage policymakers and agricultural extension officers to further promote climate-resilient and highly nutritious crops. Such possibilities are of much interest in SSA, thought to be highly vulnerable to climate change impacts where millions of people are already experiencing food insecurity.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Climate resilience of irrigated quinoa in semi-arid West Africa\",\"authors\":\"J. Alvar-Beltrán, A. Gobin, S. Orlandini, A. Dao, A. D. Marta\",\"doi\":\"10.3354/CR01660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quinoa (Chenopodium quinoa Willd.) is a herbaceous C3 crop that has demonstrated resilience in regions concurrently affected by climate change and food insecurity, such as sub-Saharan Africa (SSA). The photosynthetic rate and productivity of C3 crops are enhanced under increasing CO2 concentrations. We looked at future climate trends in SSA to estimate their impacts on quinoa yields in Burkina Faso. Climate projections show a temperature increase of 1.67-4.90°C under Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively by the end of the century. We demonstrate that any further climate disturbances can either be beneficial or harmful for quinoa, and modulating climate risks will depend on the decisions made at the farm level (e.g. planting date and crop choice). Crop modelling supports the identification of the most suitable transplanting dates based on future climate conditions (RCP 4.5 and 8.5), agroclimatic zones (Sahel, Soudano-Sahelian and Soudanian) and time-horizons (2020, 2025, 2050 and 2075). We show that quinoa yields can improve—when grown under irrigated conditions and transplanted in November—by about 14-20% under RCP 4.5 and by 24-33% under RCP 8.5 by 2075 across the Sahel and Soudanian agroclimatic zones, respectively. For the Soudano-Sahelian zone, the highest yield improvements (19%) are obtained when transplanting is assumed in December under RCP 8.5 by 2075. Overall, the findings of this work encourage policymakers and agricultural extension officers to further promote climate-resilient and highly nutritious crops. Such possibilities are of much interest in SSA, thought to be highly vulnerable to climate change impacts where millions of people are already experiencing food insecurity.\",\"PeriodicalId\":10438,\"journal\":{\"name\":\"Climate Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3354/CR01660\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/CR01660","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Climate resilience of irrigated quinoa in semi-arid West Africa
Quinoa (Chenopodium quinoa Willd.) is a herbaceous C3 crop that has demonstrated resilience in regions concurrently affected by climate change and food insecurity, such as sub-Saharan Africa (SSA). The photosynthetic rate and productivity of C3 crops are enhanced under increasing CO2 concentrations. We looked at future climate trends in SSA to estimate their impacts on quinoa yields in Burkina Faso. Climate projections show a temperature increase of 1.67-4.90°C under Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively by the end of the century. We demonstrate that any further climate disturbances can either be beneficial or harmful for quinoa, and modulating climate risks will depend on the decisions made at the farm level (e.g. planting date and crop choice). Crop modelling supports the identification of the most suitable transplanting dates based on future climate conditions (RCP 4.5 and 8.5), agroclimatic zones (Sahel, Soudano-Sahelian and Soudanian) and time-horizons (2020, 2025, 2050 and 2075). We show that quinoa yields can improve—when grown under irrigated conditions and transplanted in November—by about 14-20% under RCP 4.5 and by 24-33% under RCP 8.5 by 2075 across the Sahel and Soudanian agroclimatic zones, respectively. For the Soudano-Sahelian zone, the highest yield improvements (19%) are obtained when transplanting is assumed in December under RCP 8.5 by 2075. Overall, the findings of this work encourage policymakers and agricultural extension officers to further promote climate-resilient and highly nutritious crops. Such possibilities are of much interest in SSA, thought to be highly vulnerable to climate change impacts where millions of people are already experiencing food insecurity.
期刊介绍:
Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with:
-Interactions of climate with organisms, populations, ecosystems, and human societies
-Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation
-Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management
-Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels
-Historical case studies, including paleoecology and paleoclimatology
-Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards
-Land-surface climatology. Soil degradation, deforestation, desertification
-Assessment and implementation of adaptations and response options
-Applications of climate models and modelled future climate scenarios. Methodology in model development and application