基于定性意向感知属性的访问控制策略细化

Shohei Mitani, Jonghoon Kwon, N. Ghate, Taniya Singh, Hirofumi Ueda, A. Perrig
{"title":"基于定性意向感知属性的访问控制策略细化","authors":"Shohei Mitani, Jonghoon Kwon, N. Ghate, Taniya Singh, Hirofumi Ueda, A. Perrig","doi":"10.1145/3589608.3593841","DOIUrl":null,"url":null,"abstract":"Designing access control policies is often expensive and tedious due to the heterogeneous systems, services, and diverse user demands. Although ABAC policy and decision engine creation methods based on machine learning have been proposed, they cannot make good access decisions for applications and situations not envisioned by the decision-makers who provide training examples. It results in over-and under-permissiveness. In this paper, we propose a framework that refines pre-developed policies. It creates a decision engine that makes better decisions than those policies. Inspired by multiple criteria decision theory, our method uses the policy manager’s qualitative intentions behind their judgments to guide access decisions so that more benefits are expected. In the evaluation, we prepare a coarse and relatively elaborate policy. We refine the coarse policy to obtain a decision engine that is compared for the similarity in access decisions with the elaborate policy using AUC as a measure. The results show that our method improves the coarse policy by a difference of 12–26% in AUC and outperforms the conventional machine learning methods by a difference of 3–11% in AUC.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"2016 1","pages":"201-208"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Intention-aware Attribute-based Access Control Policy Refinement\",\"authors\":\"Shohei Mitani, Jonghoon Kwon, N. Ghate, Taniya Singh, Hirofumi Ueda, A. Perrig\",\"doi\":\"10.1145/3589608.3593841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing access control policies is often expensive and tedious due to the heterogeneous systems, services, and diverse user demands. Although ABAC policy and decision engine creation methods based on machine learning have been proposed, they cannot make good access decisions for applications and situations not envisioned by the decision-makers who provide training examples. It results in over-and under-permissiveness. In this paper, we propose a framework that refines pre-developed policies. It creates a decision engine that makes better decisions than those policies. Inspired by multiple criteria decision theory, our method uses the policy manager’s qualitative intentions behind their judgments to guide access decisions so that more benefits are expected. In the evaluation, we prepare a coarse and relatively elaborate policy. We refine the coarse policy to obtain a decision engine that is compared for the similarity in access decisions with the elaborate policy using AUC as a measure. The results show that our method improves the coarse policy by a difference of 12–26% in AUC and outperforms the conventional machine learning methods by a difference of 3–11% in AUC.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"2016 1\",\"pages\":\"201-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3589608.3593841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589608.3593841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Qualitative Intention-aware Attribute-based Access Control Policy Refinement
Designing access control policies is often expensive and tedious due to the heterogeneous systems, services, and diverse user demands. Although ABAC policy and decision engine creation methods based on machine learning have been proposed, they cannot make good access decisions for applications and situations not envisioned by the decision-makers who provide training examples. It results in over-and under-permissiveness. In this paper, we propose a framework that refines pre-developed policies. It creates a decision engine that makes better decisions than those policies. Inspired by multiple criteria decision theory, our method uses the policy manager’s qualitative intentions behind their judgments to guide access decisions so that more benefits are expected. In the evaluation, we prepare a coarse and relatively elaborate policy. We refine the coarse policy to obtain a decision engine that is compared for the similarity in access decisions with the elaborate policy using AUC as a measure. The results show that our method improves the coarse policy by a difference of 12–26% in AUC and outperforms the conventional machine learning methods by a difference of 3–11% in AUC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sidecar-based Path-aware Security for Microservices Poster: How to Raise a Robot - Beyond Access Control Constraints in Assistive Humanoid Robots Demo: A Multimodal Behavioral Biometric Scheme for Smartphone User Authentication (MBBS) Qualitative Intention-aware Attribute-based Access Control Policy Refinement SpaceMediator: Leveraging Authorization Policies to Prevent Spatial and Privacy Attacks in Mobile Augmented Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1