{"title":"利用深度q学习优化超密集网络中最坏情况用户的性能","authors":"S. Lam, Duc-Tan Tran","doi":"10.2174/2210327913666230823094503","DOIUrl":null,"url":null,"abstract":"\n\nIn Ultra-Dense Networks (UDNs), where the Base Stations are distributed with a very high density, the users are possibly near the cells’ intersection. These users are called the Worst-Case Users (WCU) and usually experience very low performance\n\n\n\nThus, improving the WCU performance is an urgent problem to secure the service requirement of future cellular networks.\n\n\n\nIn this paper, the performance of the WCU is analyzed in UDNs with a maximum power algorithm and under the wireless environment with Stretched Path Loss model and Rayleigh fading. To improve the WCU data rate, the Deep Q Networks with and without Multi-Input-Multi-output (MIMO) are utilized in this paper.\n\n\n\nThe simulation results show that a system–based Deep Q Learning can dramatically improve the WCU performance compared to the system with the maximum power algorithm. In addition, the deployment of the MIMO technique in a system–based Deep Q-learning only has benefits in bad channel conditions.\n\n\n\nIn any channel condition, utilization of Deep Q Learning is a suitable solution to improve the WCU performance. Furthermore, if the user experiences a good channel condition, the MIMO technique can be used with Deep Q Learning to obtain further performance improvement.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Performance of Worst Case User in Ultra-Dense Networks utilizing Deep Q-learning\",\"authors\":\"S. Lam, Duc-Tan Tran\",\"doi\":\"10.2174/2210327913666230823094503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn Ultra-Dense Networks (UDNs), where the Base Stations are distributed with a very high density, the users are possibly near the cells’ intersection. These users are called the Worst-Case Users (WCU) and usually experience very low performance\\n\\n\\n\\nThus, improving the WCU performance is an urgent problem to secure the service requirement of future cellular networks.\\n\\n\\n\\nIn this paper, the performance of the WCU is analyzed in UDNs with a maximum power algorithm and under the wireless environment with Stretched Path Loss model and Rayleigh fading. To improve the WCU data rate, the Deep Q Networks with and without Multi-Input-Multi-output (MIMO) are utilized in this paper.\\n\\n\\n\\nThe simulation results show that a system–based Deep Q Learning can dramatically improve the WCU performance compared to the system with the maximum power algorithm. In addition, the deployment of the MIMO technique in a system–based Deep Q-learning only has benefits in bad channel conditions.\\n\\n\\n\\nIn any channel condition, utilization of Deep Q Learning is a suitable solution to improve the WCU performance. Furthermore, if the user experiences a good channel condition, the MIMO technique can be used with Deep Q Learning to obtain further performance improvement.\\n\",\"PeriodicalId\":37686,\"journal\":{\"name\":\"International Journal of Sensors, Wireless Communications and Control\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sensors, Wireless Communications and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210327913666230823094503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327913666230823094503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Optimizing Performance of Worst Case User in Ultra-Dense Networks utilizing Deep Q-learning
In Ultra-Dense Networks (UDNs), where the Base Stations are distributed with a very high density, the users are possibly near the cells’ intersection. These users are called the Worst-Case Users (WCU) and usually experience very low performance
Thus, improving the WCU performance is an urgent problem to secure the service requirement of future cellular networks.
In this paper, the performance of the WCU is analyzed in UDNs with a maximum power algorithm and under the wireless environment with Stretched Path Loss model and Rayleigh fading. To improve the WCU data rate, the Deep Q Networks with and without Multi-Input-Multi-output (MIMO) are utilized in this paper.
The simulation results show that a system–based Deep Q Learning can dramatically improve the WCU performance compared to the system with the maximum power algorithm. In addition, the deployment of the MIMO technique in a system–based Deep Q-learning only has benefits in bad channel conditions.
In any channel condition, utilization of Deep Q Learning is a suitable solution to improve the WCU performance. Furthermore, if the user experiences a good channel condition, the MIMO technique can be used with Deep Q Learning to obtain further performance improvement.
期刊介绍:
International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.