北大西洋西部深散射层的声散射谱

J.B. Hersey, Richard H. Backus, Jessica Hellwig
{"title":"北大西洋西部深散射层的声散射谱","authors":"J.B. Hersey,&nbsp;Richard H. Backus,&nbsp;Jessica Hellwig","doi":"10.1016/0146-6313(61)90021-1","DOIUrl":null,"url":null,"abstract":"<div><p>Sound from small explosions has been used to study the frequency-dependent characteristics of deep scattering layers in three areas of the western North Atlantic Ocean. Layers show resonant properties, the scattered sound being most intense in a narrow frequency band. The scatterers are presumed to be mainly the swimbladders of bathypelagic fishes. In layers peaking at frequencies above 5 kcps there is a systematic shift of peak frequency as layer depth changes during vertical migration. In two cases studied frequency changes as the <span><math><mtext>5</mtext><mtext>6</mtext><mtext>th</mtext></math></span> power of the hydrostatic pressure. This suggests that in these cases the swimbladder simply expanded and contracted with changing pressure. In a third case frequency changes as the <span><math><mtext>1</mtext><mtext>2 </mtext><mtext>power</mtext></math></span> of the pressure. This suggests that the fish maintained neutral buoyancy throughout the depth migration by absorbing gas from the swimbladder as necessary. Layers peaking near or below 5 kcps are poorly resolved in depth. In one instance a direct relationship between frequency and depth has been established, but not well enough to define the relationship quantitatively. Pronounced depth and frequency migration is found in layers south of New England and south of Nova Scotia. Back-scattering coefficients were found to lie between − 64 and − 81 db re M<sup>−1</sup> in a small number of computations.</p></div>","PeriodicalId":100361,"journal":{"name":"Deep Sea Research (1953)","volume":"8 3","pages":"Pages 196-200, IN3-IN4, 201-210"},"PeriodicalIF":0.0000,"publicationDate":"1961-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-6313(61)90021-1","citationCount":"28","resultStr":"{\"title\":\"Sound-scattering spectra of deep scattering layers in the western North Atlantic Ocean\",\"authors\":\"J.B. Hersey,&nbsp;Richard H. Backus,&nbsp;Jessica Hellwig\",\"doi\":\"10.1016/0146-6313(61)90021-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sound from small explosions has been used to study the frequency-dependent characteristics of deep scattering layers in three areas of the western North Atlantic Ocean. Layers show resonant properties, the scattered sound being most intense in a narrow frequency band. The scatterers are presumed to be mainly the swimbladders of bathypelagic fishes. In layers peaking at frequencies above 5 kcps there is a systematic shift of peak frequency as layer depth changes during vertical migration. In two cases studied frequency changes as the <span><math><mtext>5</mtext><mtext>6</mtext><mtext>th</mtext></math></span> power of the hydrostatic pressure. This suggests that in these cases the swimbladder simply expanded and contracted with changing pressure. In a third case frequency changes as the <span><math><mtext>1</mtext><mtext>2 </mtext><mtext>power</mtext></math></span> of the pressure. This suggests that the fish maintained neutral buoyancy throughout the depth migration by absorbing gas from the swimbladder as necessary. Layers peaking near or below 5 kcps are poorly resolved in depth. In one instance a direct relationship between frequency and depth has been established, but not well enough to define the relationship quantitatively. Pronounced depth and frequency migration is found in layers south of New England and south of Nova Scotia. Back-scattering coefficients were found to lie between − 64 and − 81 db re M<sup>−1</sup> in a small number of computations.</p></div>\",\"PeriodicalId\":100361,\"journal\":{\"name\":\"Deep Sea Research (1953)\",\"volume\":\"8 3\",\"pages\":\"Pages 196-200, IN3-IN4, 201-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1961-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0146-6313(61)90021-1\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep Sea Research (1953)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0146631361900211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Sea Research (1953)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146631361900211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在北大西洋西部的三个地区,用小爆炸产生的声音研究了深散射层的频率依赖特性。层具有共振特性,在较窄的频带内散射声最强烈。据推测,这些分散物主要是深海鱼类的鳔。在垂直迁移期间,在频率高于5kcps的层中,随着层深的变化,峰值频率有系统的移动。在两种情况下,频率变化为静水压力的56次幂。这表明在这些情况下,膀胱只是随着压力的变化而扩张和收缩。在第三种情况下,频率随着压力的12次方而变化。这表明鱼在整个深度迁移过程中通过必要时从鳔中吸收气体来保持中性浮力。峰值接近或低于5kcps的层在深度上的分辨率很差。在一个例子中,频率和深度之间建立了直接关系,但还不足以定量地定义这种关系。在新英格兰以南和新斯科舍以南的地层中发现了明显的深度和频率迁移。少量计算发现后向散射系数在−64 ~−81 db re M−1之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound-scattering spectra of deep scattering layers in the western North Atlantic Ocean

Sound from small explosions has been used to study the frequency-dependent characteristics of deep scattering layers in three areas of the western North Atlantic Ocean. Layers show resonant properties, the scattered sound being most intense in a narrow frequency band. The scatterers are presumed to be mainly the swimbladders of bathypelagic fishes. In layers peaking at frequencies above 5 kcps there is a systematic shift of peak frequency as layer depth changes during vertical migration. In two cases studied frequency changes as the 56th power of the hydrostatic pressure. This suggests that in these cases the swimbladder simply expanded and contracted with changing pressure. In a third case frequency changes as the 12 power of the pressure. This suggests that the fish maintained neutral buoyancy throughout the depth migration by absorbing gas from the swimbladder as necessary. Layers peaking near or below 5 kcps are poorly resolved in depth. In one instance a direct relationship between frequency and depth has been established, but not well enough to define the relationship quantitatively. Pronounced depth and frequency migration is found in layers south of New England and south of Nova Scotia. Back-scattering coefficients were found to lie between − 64 and − 81 db re M−1 in a small number of computations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction Further considerations regarding the antiquity of the abyssal fauna with evidence for a changing abyssal environment Prevention of water loss through CAB plastic sediment core liners A contribution to the problem of the Drake Passage circulation Erratic boulders from great meteor seamount
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1