强相关电子系统——本领域进展报告

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2017-02-10 DOI:10.1088/1361-6633/aa5b0c
L. Greene, J. Thompson, J. Schmalian
{"title":"强相关电子系统——本领域进展报告","authors":"L. Greene, J. Thompson, J. Schmalian","doi":"10.1088/1361-6633/aa5b0c","DOIUrl":null,"url":null,"abstract":"The Editorial Board for Reports on Progress in Physics (ROPP) is delighted to announce the publication of a special, focused, issue on ‘strongly correlated electron systems’ or ‘SCES’ containing mini review articles or ‘Report on Progress’ aimed at collectively surveying the status of the field. Strongly correlated electron matter is seen in over 40 classes of materials (including the cuprate and Fe-based high temperature superconductors, organic superconductors, heavy fermions, transition-metal di-chalcogenides, and general quantum critical materials) as pseudogap, electronic stripe, electronic nematic, heavy electron, temperature dependent or novel charge density wave behavior, or any non-Fermi liquid behavior. The understanding of the origin of these emergent collective behaviors represents perhaps the greatest unsolved problem in physics today. It is also widely accepted that finding the solutions to these problems is essential if definitive progress is to be made in the predictive design of functional SCES, such as high-temperature superconductors. This special issue examines the foundations, present status, and future prospects of the field of SCES at over 60 years old. In light of the recent remarkable progress of this field in materials growth, measurement, theory, computation, and our general understanding, this is an opportune time to bring the world’s experts together to remind us of the foundations, elucidate where we are now, and make bold and specific recommendations for the future to aid our progress in solving this complex and important question. We have collected a significant number manuscripts by many of the leading researchers in this area, in the hope that this special issue will provide a timely and valuable resource for the many researches now working in this field, and hope to entice more scientists into this intriguing area of research. L H Greene et al","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"153 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Strongly correlated electron systems—reports on the progress of the field\",\"authors\":\"L. Greene, J. Thompson, J. Schmalian\",\"doi\":\"10.1088/1361-6633/aa5b0c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Editorial Board for Reports on Progress in Physics (ROPP) is delighted to announce the publication of a special, focused, issue on ‘strongly correlated electron systems’ or ‘SCES’ containing mini review articles or ‘Report on Progress’ aimed at collectively surveying the status of the field. Strongly correlated electron matter is seen in over 40 classes of materials (including the cuprate and Fe-based high temperature superconductors, organic superconductors, heavy fermions, transition-metal di-chalcogenides, and general quantum critical materials) as pseudogap, electronic stripe, electronic nematic, heavy electron, temperature dependent or novel charge density wave behavior, or any non-Fermi liquid behavior. The understanding of the origin of these emergent collective behaviors represents perhaps the greatest unsolved problem in physics today. It is also widely accepted that finding the solutions to these problems is essential if definitive progress is to be made in the predictive design of functional SCES, such as high-temperature superconductors. This special issue examines the foundations, present status, and future prospects of the field of SCES at over 60 years old. In light of the recent remarkable progress of this field in materials growth, measurement, theory, computation, and our general understanding, this is an opportune time to bring the world’s experts together to remind us of the foundations, elucidate where we are now, and make bold and specific recommendations for the future to aid our progress in solving this complex and important question. We have collected a significant number manuscripts by many of the leading researchers in this area, in the hope that this special issue will provide a timely and valuable resource for the many researches now working in this field, and hope to entice more scientists into this intriguing area of research. L H Greene et al\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2017-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/aa5b0c\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/aa5b0c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

《物理学进展报告》(ROPP)编辑委员会很高兴地宣布出版一份特别的,集中的,关于“强相关电子系统”或“SCES”的问题,其中包含小型评论文章或“进展报告”,旨在集体调查该领域的现状。在40多种材料(包括铜基和铁基高温超导体、有机超导体、重费米子、过渡金属双硫属化合物和一般量子临界材料)中可以看到强相关电子物质,如赝隙、电子条纹、电子向列、重电子、温度依赖性或新型电荷密度波行为,或任何非费米液体行为。对这些突现的集体行为起源的理解可能是当今物理学中最大的未解决问题。人们也普遍认为,如果要在功能性sce(如高温超导体)的预测设计方面取得决定性进展,找到这些问题的解决方案是必不可少的。本期特刊探讨了60多年来经济社会科学领域的基础、现状和未来前景。鉴于该领域最近在材料生长、测量、理论、计算和我们的一般理解方面取得的显著进展,这是一个将世界上的专家聚集在一起的时机,提醒我们的基础,阐明我们现在所处的位置,并为未来提出大胆而具体的建议,以帮助我们在解决这个复杂而重要的问题方面取得进展。我们收集了该领域许多主要研究人员的大量手稿,希望这一期特刊能为目前在该领域工作的许多研究人员提供及时而有价值的资源,并希望吸引更多的科学家进入这一有趣的研究领域。L H Greene等人
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strongly correlated electron systems—reports on the progress of the field
The Editorial Board for Reports on Progress in Physics (ROPP) is delighted to announce the publication of a special, focused, issue on ‘strongly correlated electron systems’ or ‘SCES’ containing mini review articles or ‘Report on Progress’ aimed at collectively surveying the status of the field. Strongly correlated electron matter is seen in over 40 classes of materials (including the cuprate and Fe-based high temperature superconductors, organic superconductors, heavy fermions, transition-metal di-chalcogenides, and general quantum critical materials) as pseudogap, electronic stripe, electronic nematic, heavy electron, temperature dependent or novel charge density wave behavior, or any non-Fermi liquid behavior. The understanding of the origin of these emergent collective behaviors represents perhaps the greatest unsolved problem in physics today. It is also widely accepted that finding the solutions to these problems is essential if definitive progress is to be made in the predictive design of functional SCES, such as high-temperature superconductors. This special issue examines the foundations, present status, and future prospects of the field of SCES at over 60 years old. In light of the recent remarkable progress of this field in materials growth, measurement, theory, computation, and our general understanding, this is an opportune time to bring the world’s experts together to remind us of the foundations, elucidate where we are now, and make bold and specific recommendations for the future to aid our progress in solving this complex and important question. We have collected a significant number manuscripts by many of the leading researchers in this area, in the hope that this special issue will provide a timely and valuable resource for the many researches now working in this field, and hope to entice more scientists into this intriguing area of research. L H Greene et al
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1