EARS 2019:第二届可解释推荐和搜索国际研讨会

Yongfeng Zhang, Yi Zhang, Min Zhang, C. Shah
{"title":"EARS 2019:第二届可解释推荐和搜索国际研讨会","authors":"Yongfeng Zhang, Yi Zhang, Min Zhang, C. Shah","doi":"10.1145/3331184.3331649","DOIUrl":null,"url":null,"abstract":"Explainable recommendation and search attempt to develop models or methods that not only generate high-quality recommendation or search results, but also interpretability of the models or explanations of the results for users or system designers, which can help to improve the system transparency, persuasiveness, trustworthiness, and effectiveness, etc. This is even more important in personalized search and recommendation scenarios, where users would like to know why a particular product, web page, news report, or friend suggestion exists in his or her own search and recommendation lists. The workshop focuses on the research and application of explainable recommendation, search, and a broader scope of IR tasks. It will gather researchers as well as practitioners in the field for discussions, idea communications, and research promotions. It will also generate insightful debates about the recent regulations regarding AI interpretability, to a broader community including but not limited to IR, machine learning, AI, Data Science, and beyond.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"EARS 2019: The 2nd International Workshop on ExplainAble Recommendation and Search\",\"authors\":\"Yongfeng Zhang, Yi Zhang, Min Zhang, C. Shah\",\"doi\":\"10.1145/3331184.3331649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable recommendation and search attempt to develop models or methods that not only generate high-quality recommendation or search results, but also interpretability of the models or explanations of the results for users or system designers, which can help to improve the system transparency, persuasiveness, trustworthiness, and effectiveness, etc. This is even more important in personalized search and recommendation scenarios, where users would like to know why a particular product, web page, news report, or friend suggestion exists in his or her own search and recommendation lists. The workshop focuses on the research and application of explainable recommendation, search, and a broader scope of IR tasks. It will gather researchers as well as practitioners in the field for discussions, idea communications, and research promotions. It will also generate insightful debates about the recent regulations regarding AI interpretability, to a broader community including but not limited to IR, machine learning, AI, Data Science, and beyond.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

可解释的推荐和搜索试图开发模型或方法,不仅产生高质量的推荐或搜索结果,而且模型或结果的解释对于用户或系统设计者来说是可解释性的,这有助于提高系统的透明度、说服力、可信度和有效性等。这在个性化搜索和推荐场景中更为重要,用户想知道为什么特定的产品、网页、新闻报道或朋友建议会出现在他或她自己的搜索和推荐列表中。研讨会的重点是可解释的推荐、搜索和更广泛的红外任务的研究和应用。它将聚集该领域的研究人员和实践者进行讨论、思想交流和研究推广。它还将引发有关人工智能可解释性的最新法规的深刻辩论,涉及更广泛的社区,包括但不限于人工智能、机器学习、人工智能、数据科学等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EARS 2019: The 2nd International Workshop on ExplainAble Recommendation and Search
Explainable recommendation and search attempt to develop models or methods that not only generate high-quality recommendation or search results, but also interpretability of the models or explanations of the results for users or system designers, which can help to improve the system transparency, persuasiveness, trustworthiness, and effectiveness, etc. This is even more important in personalized search and recommendation scenarios, where users would like to know why a particular product, web page, news report, or friend suggestion exists in his or her own search and recommendation lists. The workshop focuses on the research and application of explainable recommendation, search, and a broader scope of IR tasks. It will gather researchers as well as practitioners in the field for discussions, idea communications, and research promotions. It will also generate insightful debates about the recent regulations regarding AI interpretability, to a broader community including but not limited to IR, machine learning, AI, Data Science, and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1