{"title":"重新访问规范化查询承诺","authors":"Haggai Roitman","doi":"10.1145/3331184.3331334","DOIUrl":null,"url":null,"abstract":"We revisit the Normalized Query Commitment (NQC) query performance prediction (QPP) method. To this end, we suggest a scaled extension to a discriminative QPP framework and use it to analyze NQC. Using this analysis allows us to redesign NQC and suggest several options for improvement.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Normalized Query Commitment Revisited\",\"authors\":\"Haggai Roitman\",\"doi\":\"10.1145/3331184.3331334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the Normalized Query Commitment (NQC) query performance prediction (QPP) method. To this end, we suggest a scaled extension to a discriminative QPP framework and use it to analyze NQC. Using this analysis allows us to redesign NQC and suggest several options for improvement.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们回顾了规范化查询承诺(NQC)查询性能预测(QPP)方法。为此,我们建议对判别性QPP框架进行扩展,并将其用于NQC分析。利用这种分析,我们可以重新设计NQC,并提出几个改进方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Normalized Query Commitment Revisited
We revisit the Normalized Query Commitment (NQC) query performance prediction (QPP) method. To this end, we suggest a scaled extension to a discriminative QPP framework and use it to analyze NQC. Using this analysis allows us to redesign NQC and suggest several options for improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1