Julien Cumin, G. Lefebvre, F. Ramparany, J. Crowley
{"title":"自适应环境智能的活动和可用性预测","authors":"Julien Cumin, G. Lefebvre, F. Ramparany, J. Crowley","doi":"10.1145/3424344","DOIUrl":null,"url":null,"abstract":"Autonomy and adaptability are essential components of ambient intelligence. For example, in smart homes, proactive acting and occupants advising, adapted to current and future contexts of living, are essential to go beyond limitations of previous domotic services. To reach such autonomy and adaptability, ambient systems need to automatically grasp their users’ ambient context. In particular, users’ activities and availabilities for communication are valuable pieces of contextual information that can help such systems to adapt to user needs and behaviours. While significant research work exists on activity recognition in homes, less attention has been given to prediction of future activities, as well as to availability recognition and prediction in general. In this article, we investigate several Dynamic Bayesian Network (DBN) architectures for activity and availability prediction of occupants in homes, including our novel model, called Past SItuations to predict the NExt Situation (PSINES). This predictive architecture utilizes context information, sensor event aggregations, and latent user cognitive states to accurately predict future home situations based on previous situations. We experimentally evaluate PSINES, as well as intermediate DBN architectures, on multiple stateof-the-art datasets, with prediction accuracies of up to 89.52% for activity and 82.08% for availability on the Orange4Home dataset.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"59 1","pages":"1:1-1:12"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PSINES: Activity and Availability Prediction for Adaptive Ambient Intelligence\",\"authors\":\"Julien Cumin, G. Lefebvre, F. Ramparany, J. Crowley\",\"doi\":\"10.1145/3424344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomy and adaptability are essential components of ambient intelligence. For example, in smart homes, proactive acting and occupants advising, adapted to current and future contexts of living, are essential to go beyond limitations of previous domotic services. To reach such autonomy and adaptability, ambient systems need to automatically grasp their users’ ambient context. In particular, users’ activities and availabilities for communication are valuable pieces of contextual information that can help such systems to adapt to user needs and behaviours. While significant research work exists on activity recognition in homes, less attention has been given to prediction of future activities, as well as to availability recognition and prediction in general. In this article, we investigate several Dynamic Bayesian Network (DBN) architectures for activity and availability prediction of occupants in homes, including our novel model, called Past SItuations to predict the NExt Situation (PSINES). This predictive architecture utilizes context information, sensor event aggregations, and latent user cognitive states to accurately predict future home situations based on previous situations. We experimentally evaluate PSINES, as well as intermediate DBN architectures, on multiple stateof-the-art datasets, with prediction accuracies of up to 89.52% for activity and 82.08% for availability on the Orange4Home dataset.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"59 1\",\"pages\":\"1:1-1:12\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3424344\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3424344","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PSINES: Activity and Availability Prediction for Adaptive Ambient Intelligence
Autonomy and adaptability are essential components of ambient intelligence. For example, in smart homes, proactive acting and occupants advising, adapted to current and future contexts of living, are essential to go beyond limitations of previous domotic services. To reach such autonomy and adaptability, ambient systems need to automatically grasp their users’ ambient context. In particular, users’ activities and availabilities for communication are valuable pieces of contextual information that can help such systems to adapt to user needs and behaviours. While significant research work exists on activity recognition in homes, less attention has been given to prediction of future activities, as well as to availability recognition and prediction in general. In this article, we investigate several Dynamic Bayesian Network (DBN) architectures for activity and availability prediction of occupants in homes, including our novel model, called Past SItuations to predict the NExt Situation (PSINES). This predictive architecture utilizes context information, sensor event aggregations, and latent user cognitive states to accurately predict future home situations based on previous situations. We experimentally evaluate PSINES, as well as intermediate DBN architectures, on multiple stateof-the-art datasets, with prediction accuracies of up to 89.52% for activity and 82.08% for availability on the Orange4Home dataset.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.